

PIECE 6 : ELÉMENTS GRAPHIQUES ET ANNEXES TECHNIQUES

Les éléments graphiques utiles à la compréhension sont inclus dans les différentes parties du dossier.

Les notes de calculs sont présentées dans les annexes ci-après.

Les annexes sont les suivantes :

Annexe 1 : Périmètre STIF

- Note assainissement Note technique
- Diagnostic zone humide

Annexe 2 : Périmètre SNCF Réseau

- Dimensionnement des bassins,
- Notes de calculs,
- Assainissement retenu au niveau de la RD7,
- Assainissement retenu au niveau du PN4,
- Assainissement retenu au niveau du PN2,
- Synoptiques du drainage,
- Diagnostic zone humide,
- Compte rendus de réunions avec les mairies.

Annexe 3 : Périmètre SNCF Mobilités

- Notes de calculs,
- Courrier d'accord de l'Armée,
- Dossier de déclaration ICPE.

L'étude d'impact mise à jour, jointe au présent dossier de demande d'autorisation, fait l'objet d'une pièce à part.

Dossier d'autorisation au titre des articles L.214-1 et suivants du Code de l'environnement

1. ANNEXE 1 : PERIMETRE STIF

1.1. Note assainissement – Note technique

Tangentielle Ouest

TANGENTIELLE OUEST (TGO) Phase 1

Note Assainissement Note technique

GTGO Maître d'Ouvrage Délégué Périmètre STIF

Ĭ	Projet	Code Classement	Phase	Emetteur	Type Document	Spécialité	Périmètre	Repérage	Numéro chrono	Indice
	TGO1	C5081	AVP	ARTE	NTE	ASS	Х	000	58121	D

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

	Date	Observations/Modifications	Rédigé par	Vérifié par	Approuvé par
A01	05-12-2014	Emission initiale	Pôle Ass. IU/ST	RWM/PAL	PAL
В	29-01-2015	V1	Pôle Ass. IU/ST	RWM/PAL	PAL
С	18-05-2015	Reprises Vf	Pôle Ass. IU/ST	PAL	PAL
D	28-07-2015	Compléments temps de vidange suite réunion DDT du 21-07/2105	Pôle Ass. IU/ST	PAL	PAL
Е	08-08-2015	Compléments bilan imperméabilisation avant/après	Pôle Ass. IU/ST	PAL	PAL

3/127

SOMMAIRE

1.	Principe	s généraux d'assainissement	5
	1.1 Co	ntexte de l'Existant	5
	1.1.1	Périmètre Saint-Germain-en-Laye (SP1)	5
	1.1.2	Périmètre Virgule Saint-Cyr (SP2)	8
	1.2 Pre	scriptions générales de la DDT et Hypothèses de calcul	12
	1.3 Pri	ncipes techniques proposées en phase AVP	18
	1.3.1	Assainissement Périmètre Saint-Germain-en-Laye (SP1)	18
	1.3.2	Assainissement Périmètre Virgule Saint-Cyr (SP2)	26
	1.4 Dé	inition des ouvrages types	26
	1.4.1	Ouvrages généraux	26
	1.4.2	Ouvrages spécifiques	28
	1.4.3	Temps de vidange des noues et bassins	35
	1.4.4	Limites d'exploitation proposées	46
2.	Rétenti	ons compensatoires par séquence du projet	48
	2.1 Ob	ectifs et principes généraux	48
	2.1.1	Périmètre Saint-Germain-en-Laye (SP1)	49
	2.1.2	Périmètre Virgule Saint-Cyr (SP2)	50
	2.2 Dir	nensionnement avp par périmètre et descriptif par séquence	50
	2.2.1	Périmètre Saint-Germain-en-Laye (SP1)	50
	2.2.2	Périmètre Virgule Saint-Cyr (SP2)	80
	2.3 Bila	ın imperméabilisation avant/après	91
	2.3.1	Périmètre Saint-Germain-en-Laye (SP1)	91
	2.3.2	Périmètre Virgule Saint-Cyr (SP2)	93
3.	Assainis	sement des equipements d'exploitation	94
	3.1 Eq	uipements d'exploitation périmètre Saint-Germain-en-Laye (SP1)	94
	3.2 Eq.	ipements d'exploitation perimetre Virgule Saint-Cyr (SP2)	94
4.	Annexe	des notes de calculs	95
	4.1 No	tes de calcul Périmètre Saint-Germain-en-Laye (SP1)	95
	4.1.1	Estimation des volumes de rétention par sous-bassins versants / dimensionnement des tranchée	es de
	rétentio	n/infiltration	95
	4.1.2	RN184 – Plateforme au débranchement du RFN	95
	4.1.3	RN184 – Plateforme en sortie du carrefour Lisière Pereire	96
	4.1.4	RN184 – section située au carrefour RN184/RD190	98
	4.1.5	RN184 – section comprise entre la RD190 et l'avenue Kennedy	99
	4.1.6	Exemple fiche d'évaluation des volumes par l'approche BVRmax - BV Plateforme + voie verte	101
	4.1.7	Avenue Kennedy – Noues N01, N02, N03, N04	102
	4.1.8	Avenue Kennedy – Bassins de rétention DN2000 EP voirie BR01, BR02, BR05, BR06, BR07	105
	4.1.9	Avenue Kennedy – Bassins de rétention DN2000 EP plateforme + trottoir sud BR03, BR04	107

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

4.1.10	Avenue Kennedy – Synthèse des bassins de rétention DN2000 eaux pluviales voirie ou
platefor	me+accotement
4.1.11	Avenue des Loges – séquence dans la contre-allée jusqu'à l'usine de ventilation A14 (600 ml) 109
4.1.12	Avenue des Loges – séquence au-delà de l'usine de ventilation A14 en lisière de forêt110
4.2 Not	tes de calcul Périmètre Virgule Saint-Cyr (SP2)111
4.2.1	Bassins versants naturels amont au RFN (cf. approche MOE SNCF / GTAR 2006)111
4.2.2	Bassins versants naturels champ INRA BV1 et BV2 (approche GTAR 2006)
4.2.3	Assemblage Bassins versants naturels amont RFN et INRA BV1 et BV2 (approche GTAR 2006)117
4.2.4	Bassins versants emprise Virgule Saint-Cyr et rétentions associées (approche GTAR 2006)121
4.2.5	Estimations des volumes de rétention compensatoires de l'imperméabilisation supplémentaire générée
au droit	de la Virgule Saint-Cyr

5/127

1.1 CONTEXTE DE L'EXISTANT

1.1.1 Périmètre Saint-Germain-en-Laye (SP1)

Les différents interlocuteurs assainissement sur le périmètre Saint-Germain-en-Laye sont :

- La DIRIF pour la RN184
- Le Département des Yvelines pour la RD190 et la RD284
- Le Service Assainissement de la Ville de Saint-Germain-en-Laye pour l'Avenue Kennedy

1.1.1.1 Assainissement de la RN184 (DIRIF)

Le projet d'insertion le long de la RN184 induit :

- la suppression du fossé de collecte Est entre la sortie du RFN et la RD290 pour l'implantation d'une 3^{ième} file sens sud>nord (cf. étude trafic phase AVP),
- 2) la suppression du fossé de collecte Est entre la RD190 et l'Avenue Kennedy.

La DIRIF a précisé en date du 12/09/14 que ces fossés latéraux étaient des fossés d'infiltration sans autre exutoire. La DIRIF a transmis au MOE GTGO le 05/11/14 les plans des bassins versants repris par ces fossés sur le secteur d'étude de la RN184 depuis la traversée de plateforme au niveau du projet Lisière Pereire.

La DIRIF a demandé à ce que le projet rétablisse à l'identique la capacité de reprise du bassin versant existant.

En termes d'exploitation, la DIRIF a préconisé si possible des aménagements simples.

Concernant les prescriptions de la DIRIF vis-à-vis d'un risque de pollution, la DIRIF a précisé en date du 06/10/14 qu'elle devrait pouvoir intervenir avec une pompe à hydrocarbure dans le dispositif de collecte installé.

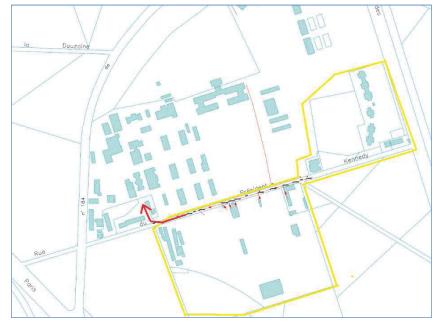
La DIRIF a transmise par mail du 05/11/14 le fichier des bassins versants de la RN184 repris par les fossés latéraux existants. Dans le cadre du présent AVP, les bassins versants de la demi-chaussée RN184 côté Est ont été représentés sur les plans et pris en compte dans le dimensionnement des dispositifs de collecte des eaux pluviales.

1.1.1.2 Assainissement de la RD190 et de la RD284 (Dép.78)

Le Département des Yvelines rencontrés le 28/08/14 ne dispose pas de réseau d'assainissement enterré pour la collecte des eaux pluviales de voirie. Dép.78 a confirmé que les eaux de ruissellement de la RD190 et de la RD284 étaient collectées par des fossés latéraux d'infiltration comme pour la RN184.

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE


1.1.1.3 Assainissement de la Ville de Saint-Germain-en-Laye

Un diagnostic assainissement a été récemment réalisé sur la commune de Saint-Germain-en-Laye.

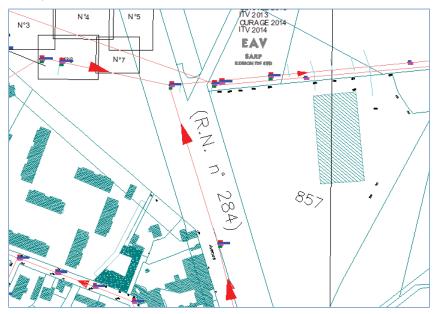
Plus spécifiquement sur l'Avenue Kennedy, le réseau est en unitaire ; celui-ci est relativement vétuste sur l'avenue Kennedy et ne couvre que 500 ml maximum de l'avenue le long du Complexe Sportif. Il est à noter que ce réseau unitaire sera impacté par le projet car situé sous la future plateforme.

Par ailleurs, les précisions suivantes ont été apportées par le Service Assainissement de la Ville de Saint-Germain-en-Laye en date du 08/11/14 :

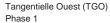
- concernant les eaux collectées sur l'avenue des Loges, la STEP aval est celle de Seine Aval,
- concernant les eaux collectées sur l'avenue Kennedy, la STEP est celle de Seine Grésillon,
- concernant le bassin versant recueilli par le réseau de la rue Kennedy, celui-ci a été localisé de manière indicative par la Ville; ce réseau passe ensuite dans les terrains militaires du Camp des Loges pour se rejeter en aval vers un ovoïde public au nord de la parcelle au niveau de la RN184.

Localisation indicative BV DN300 unitaire existant Avenue Kennedy (source Ville de Saint-Germain)

7/127


On note aujourd'hui des difficultés dans la collecte des eaux usées du restaurant Cazaudehore situé face au centre d'entraînement du PSG: la parcelle n'est pas équipée d'un dégraisseur avant rejet sur le réseau public / non-conformité.

Ce réseau unitaire DN300 est peu profond (profondeur TN/FE min. de 1,75 m) rendant très difficile un raccordement purement gravitaire des parties amont et aval de l'avenue Kennedy non dotées de réseau d'assainissement :


- les 200 premiers ml de l'avenue Kennedy en venant de la RN184 ne sont pas spécifiquement assainis : rejet des eaux pluviales vers la lisière forestière via abaissement de bordure de chaussée en rive sud,
- les 300 derniers ml de l'avenue Kennedy ne sont pas non plus spécifiquement assainis : rejet des EP vers la lisière forestière.

A l'approche du Château, à hauteur du carrefour RD284/RD157, un réseau d'assainissement est présent en direction de la Piscine Olympique de Saint-Germain. Il s'agit d'un ovoïde T 180 empierré.

Ce réseau est peu profond par ailleurs (profondeur min. TN/FE observée de *1,58 m* cf. plan Ville de Saint-Germain).

Localisation ovoïde unitaire T180 secteur RD284/Piscine Olympique (source Ville de Saint-Germain)

NOTE ASSAINISSEMENT NOTE TECHNIQUE

1.1.1.4 Bassins versants interceptés par le projet

Il n'a pas été identifié de bassins versant dont les écoulements seraient interceptés par le projet. En effet, les surfaces forestières contiguës aux emprises ne convergent pas vers la plateforme. Les bassins interceptés se limitent donc aux emprises même du projet sur la section de Saint-Germain-en-Laye, soit environ 5,6 ha constitué par les surfaces de voirie, plateforme, trottoir ou accotement :

- ≈ 1 ha en rive de la RN184.
- ≈ 2,2 ha sur l'avenue Kennedy,
- ≈ 2,4 ha en rive de l'avenue des Loges.

1.1.2 Périmètre Virgule Saint-Cyr (SP2)

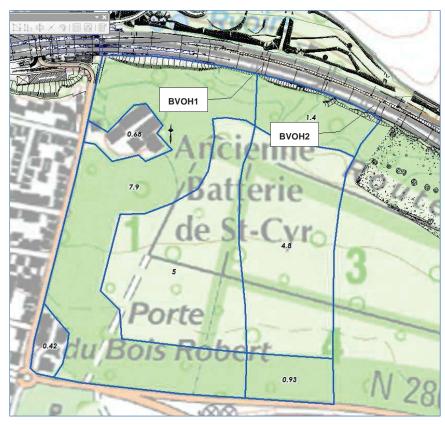
1.1.2.1 Assainissement existant

Le projet de la Virgule Saint-Cyr est quasi exclusivement situé sur la Commune de Versailles.

Un réseau communal Ville de Saint-Cyr existe au niveau de la rue Pierre Sémard mais n'est a priori pas impacté par le projet qui démarre au-delà de la limite communale (position de ce réseau à confirmer toutefois avec la Ville de Saint-Cyr).

Versailles Grand Parc (VGP) gère en exploitation le parking public situé en contrebas du projet en rive de la RD10. Ce parking est équipé d'un réseau de collecte des eaux pluviales hors périmètre du projet.

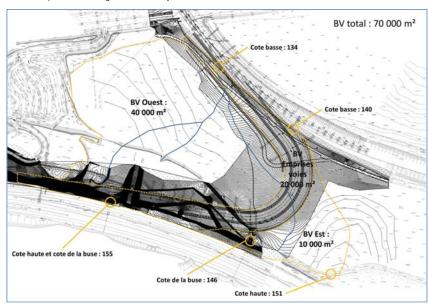
Il est surtout à noter la présence de deux busages sous le RFN reprenant les eaux pluviales de bassins versants situés en amont du RFN. RFF et son MOE ont confirmé dans le cadre des réunions de travail DSLE que ces buses ne reprenaient pas d'eau pluviale en provenance du RFN. Par ailleurs le MOE SNCF a procédé à une identification de ces bassins versants amont notés BV OH1 et BV OH2 et à une évaluation des débits Q10 et Q100 générés par ces bassins versants (selon la méthode GTAR 2006) :


BV OH1: Q10 = 0.47 m3/s / Q100 = 1 m3/s
 BV OH2: Q10 = 0.32 m3/s / Q100 = 0.67 m3/s

La planche ci-après permet de localiser ces deux bassins versants.

Localisation indicative des bassins versants naturels situés en amont du RFN (source MOE SNCF pour RFF)

Tangentielle Ouest (TGO)
Phase 1


NOTE ASSAINISSEMENT NOTE TECHNIQUE

1.1.2.2 Bassins versants interceptés par le projet

Au niveau des bassins versants naturels situés en contrebas du faisceau du RFN Paris/RER C, les ruissellements convergent vers la Grande Ceinture en contrebas qui elle-même est dotée d'un fossé de collecte latéral (périmètre RFF). Les surfaces des bassins versants naturels interceptés ont été évaluées à l'appui du plan indicatif ci-dessous :

- Bassin versant naturel Ouest noté BV1 ou BV Ouest (partie boisée et principalement champ INRA) :
 ≈ 4 ha
- Bassin versant naturel Est noté BV2 ou BV Est (champ INRA) : ≈ 1 ha
- Emprises de la virgule de Saint-Cyr : ≈ 2 ha

Localisation indicative des bassins versants naturels interceptés entre le RFN faisceau de Paris et la GCO en contrebas ; champ exploité par l'INRA (source MOE GTGO pour STIF)

Il en résulte le bilan suivant :

- Surface actuelle desservie par l'assainissement : 0 ha
- Surface futures desservies: 28 ha dont 2 ha correspondant aux emprises du projet et 26 ha aux bassins versants interceptés par le projet (21 ha de bassins versants interceptés en amont du RFN et 5 ha interceptés au niveau de la parcelle agricole située entre le RFN et la Grande Ceinture).

1.1.2.3 Présence de nappe en point bas de la Virgule Saint-Cyr

Il s'agit probablement du niveau de la nappe phréatique qui circule à la base des Sables de Fontainebleau. Cette nappe peu puissante, généralement de quelques mètres, est soutenue par l'horizon peu perméable des Argiles à Corbules.

	Pz	1	F	¹ z2	Pz3			
Cote de la tête	142.45		14	3.70	136.25			
08/12/14	13.5	128.95	sec (1	128.70)	8.6	127.65		
29/01/15	12.5	129.95	13.5	130.20	7.0	129.30		
12/03/15	12.6	129.85	13.5	130.20	7.2	129.05		

Des circulations ou des rétentions d'eau sont cependant possibles dans les terrains superficiels en fonction des saisons et des conditions météorologiques.

Un relevé ponctuel ne permet qu'une approche du niveau d'eau à un moment donné, sans possibilité d'apprécier la variation inéluctable des nappes et circulations qui dépendent notamment des conditions météorologiques. Aussi, un relevé mensuel des piézomètres est prévu pendant un an.

En ce qui concerne le rabattement de nappe en point bas de la virgule, un essai de pompage sera réalisé d'ici l'automne 2015 dans le cadre des études détaillées de niveau PRO.

Il permettra d'évaluer le débit de pompage pour les travaux de réalisation des bassins de rétention enterré DN2000.

A ce stade, seule une estimation sommaire a pu être effectuée par Fondasol en considérant un coefficient de perméabilité de 10⁻⁵ m/s, soit un débit de l'ordre de 40 à 60 m³/h pour une tranchée de 90 ml (les travaux prévoient la réalisation de deux tranchées de 90 ml environ chacune pour la pose de bassins enterrés DN2000). Il s'agit d'un calcul sommaire à valider en G2 PRO avec une étude spécifique.

En supposant la réalisation de ce deux tranchées de 90 ml en parallèle de part et d'autre de l'assiette de la future plateforme et sur la base d'une cadence de 3 ml/jour compte tenu des contraintes, on obtiendrait :

- Durée minimum travaux des deux conduites DN2000 réalisées en parallèle sur 90 ml : 6 semaines ou 42 jours
- Volume résultant sur les deux tranchées : 50 m3/h moyen x 2 tranchées x 42 jours x 24 heures ≈ 100 000 m3

On serait donc \underline{a} minima dans la tranche supérieur à 10 000 m3 / an et inférieur à 200 000 m3 / an, sachant que le DLE reste dans tous les cas en Autorisation.

Suite à la réunion DLE du 21/07/15, les points suivants ont été précisés ou notés par la DDT :

Tangentielle Ouest (TGO)
Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

- Concernant le pompage en point bas de la Virgule Saint-Cyr pour la réalisation des bassins enterrés DN2000, ce qu'il faudra indiquer c'est le débit capable des pompes mises en œuvre pendant la durée de ces travaux;
- les eaux de pompage en phase travaux seront rejetées vers le fossé de la Grande Ceinture, seul exutoire actuellement disponible,

Pour Fondasol Géotechnicien de GTGO, la rubrique 1.1.1.0 est à viser pour son essai de pompage via un dossier de déclaration à monter par ses soins (instruction 2 mois) pour un essai à l'automne.

Plan de localisation des piézomètres PZ1, PZ2, PZ3 Virgule Saint-Cvr

1.2 Prescriptions generales de la DDT et Hypotheses de Calcul

1.2.1.1 Coefficients de ruissellement

Les coefficients de ruissellement généraux retenus pour les hypothèses de calcul pour les différents périmètres STIF/RFF/SNCF sont les suivants :

- Bâtiment =1 (périmètre centre de maintenance)
- Voirie = 0,90 à 0,95
- Ballast = 0,85

11/127

- Trottoir = 0,7 moyen
- Espaces verts = 0,2
- Sol cultivé perméable = 0,3 à 0,4
- Forêt dense = 0,2
- Talus forestier = 0.3

13/127

Coefficients de ruissellement particuliers relatifs au périmètre STIF de Saint-Germain-en-Laye :

 Concernant le coefficient de ruissellement relatif au périmètre STIF de Saint-Germain-en-Laye pour une plateforme végétalisé sur longrine, il est proposé un coefficient du ruissellement de 0,5 à 0,6.

1.2.1.2 Débits de fuite admissibles cf. SDAGE de la Seine et SAGE de la Mauldre

Périmètre Saint-Germain-en-Laye (SP1) :

La DDT a précisé les points suivants pour le secteur Saint-Germain-en-Laye en réunion de travail du 23/10/14 en application du SDAGE de la Seine :

- · Calcul des rétentions à 1l/s/ha pluie 10 ans si raccordement sur réseau public,
- Calcul des rétentions à 1l/s/ha pluie 20 ans si raccordement vers le milieu naturel (ex: Ru) en agglomération,
- Calcul des rétentions à 1l/s/ha pluie 10 ans si raccordement vers le milieu naturel (ex: Ru) hors agglomération (les fossés RD284 et RN184 Saint-Germain hors agglomération en lisière de forêt rentreraient dans ce cas).

Complément DDT du 21/07/15 sur les périodes de retour :

- Zone hors agglomération : 10 ans (concerne les périmètres STIF SP1 et SP2),
- Zone résidentielle : 20 ans (non concerné pour périmètre STIF),
- Zone centre-ville : 30 ans (non concerné pour périmètre STIF).

Périmètre Virgule Saint-Cyr (SP2) :

La DDT a confirmé par ailleurs l'application du SAGE de la Mauldre sur le périmètre Saint-Cyr, beaucoup plus contraignant :

• Dimensionnement des rétentions à 11/s/ha pour une pluie 100 ans.

Le MOE RFF a confirmé les hypothèses suivantes par ailleurs :

- Dimensionnement des fossés latéraux de collecte des eaux pluviales de la Virgule Saint-Cyr pour une pluie 10 ans,
- Dimensionnement des busages sous la Virgule Saint-Cyr pour une pluie 100 ans.

Concernant les rejets au milieu naturel par infiltration, ceux-ci sont à privilégier lorsque cela est possible. En cas de bassin d'infiltration, une doctrine régionale préconise 1 à 2 m entre le toit de la nappe et le fond des bassins (recommandation qui recoupe par ailleurs les prescriptions du Guides des Techniques Alternatives en assainissement pluvial préconisant de situer la base des fossés à plus de 1 m du niveau des plus hautes eaux de la nappe si elle existe).

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

1.2.1.3 Coefficients d'infiltration

Périmètre Saint-Germain-en-Laye (SP1) :

Les premiers résultats des essais de perméabilité réalisés par FONDASOL BE Géotechnique pour le compte de GTGO MOA entre 1 et 2 m de profondeur sont les suivants :

Sondage	Nature	Coeff. de perméabilité (m/s)
TH2	Sable argileux	5.10-6
TH4	Argile sableuse	3.10-6
TH6	Argile sablo-graveleuse	5.10-6
TH8	Argile sableuse	5.10-6
THI0	Argile sableuse	4.10-6
TH14	Argile limono-sableuse	< 1.10-6
TH29	Sable limoneux	4.10-6
TH33	Sable	2.10-6
TH35	Sable argileux	4.10-6
TH37	Limon sableux	2.10-6
TH4I	Limon sableux	2.10-6
TH45	Argile limono-sableuse	< 1.10-6
TH49	Marne	4.10-6
TH53	Limon sableux	8.10-6

Les terrains superficiels sont donc des sols peu à moyennement perméables, ce qui est assez peu favorables pour l'infiltration des eaux pluviales. FONDASOL a rappelé qu'il s'agissait d'essais très ponctuels, les résultats pouvant varier fortement d'un point à un autre.

Les piézomètres posés à 10 m de profondeur par FONDASOL étaient tous secs lors du relevé effectué à minovembre. Toutefois, des circulations d'eau sont toujours possibles dans les terrains superficiels en fondation des conditions météorologiques.

Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

15/127

Suite à échanges avec FONDASOL, il a été retenu courant novembre un coefficient $K = 10^6 \, \text{m}^3/\text{m}^2/\text{s}$ dans le cadre de l'AVP. Des compléments pourront être programmés dans le cadre de la G2 PRO : par exemple, mesure complémentaire des coefficients d'infiltration au droit des points bas des tranchées de rétention pour détecter la présence éventuelle de sous-couches plus perméables et compléter le cas échéant la capacité d'infiltration via la création de puits d'infiltration.

Périmètre Virgule Saint-Cyr (SP2) :

Les premiers résultats des essais de perméabilité réalisés par FONDASOL fournissent les résultats suivants :

Sondage	Prof. de l'essai (m)	Nature	K (m/s)
SC8	1/2	Sable argileux	8.10-6
SC8	3/4	Argile sableuse	< 1.10-6
SC10	1/2	Argile sableuse	1.10-6
SC10	3/4	Sable fin	< 1.10-6

Les terrains sont donc assez peu perméables.

FONDASOL n'a pas relevé de niveaux d'eau dans les piézomètres au moment de la reconnaissance.

FONDASOL a précisé que il s'agissait de résultats partiels, FONDASOL étant en mesure de transmettre des éléments plus détaillés mi-décembre.

En l'état, il a été retenu un coefficient $K = 10^{-6} \text{ m}^3/\text{m}^2/\text{s}$ dans le cadre de l'AVP V0.

<u>Nota:</u> sur le périmètre du SMR, le MOE SNCF a pour sa part retenu un coefficient K de = $10^5 \, \text{m}^3/\text{m}^2/\text{s}$ dans le cadre de son AVP.

Ce coefficient K nécessite donc d'importantes surfaces d'échange pour l'infiltration dans le sol justifiant une partie des surcoûts induits par l'assainissement vis-à-vis de l'Expertise initiale du C0.

Tangentielle Ouest (TGO)
Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

1.2.1.4 Coefficients de Montana

Suite aux différentes réunions de travail entre MOAs/MOEs sur les périmètres STIF/RFF/SNCF, les coefficients suivants ont été retenus :

	T = 10) ans	T = 100 ans			
	a	b	a	b		
5< T _p < 25 min	208	0,335	575	0,549		
25 < T _p < 1 440 min	917	0,795	755	0,634		

Tp: temps de pluie; T: période de retour

Courbe IDF de la région d'étude pour T = 10 ans :

i10 = a x tc^(-b) mm/h avec tc en mn (cf. tableau ci-dessus en fonction de l'intervalle de temps qui correspond au temps de concentration du bassin versant considéré)

1.2.1.5 Hypothèses hauteur de pluie journalière

Les hypothèses communes suivantes ont été retenues entre le MOE SNCF et le MOE GTGO pour l'application de la méthode SETRA GTAR 2006 :

- P10 = hauteur de la pluie journalière décennale en mm = 63,5 mm
- P100 = hauteur de la pluie journalière centennale en mm = 79 mm

1.2.1.6 Evaluation des volumes de rétention

Le calcul des volumes de rétention a été effectué selon trois approches :

- Estimation selon approche type SEVESC (méthode des volumes)
- Estimation selon méthode des pluies avec recherche de V BR max (25 mn≤ t ≤1440 mn)
- Estimation selon ratio DRIEA pluie 10 ans 1l/s/ha (pluie de 24 h) : 450 m³/ha actif

Ces trois approches ont pour but de vérifier la cohérence des estimations des volumes par recoupement de méthode. La méthode SEVESC comme le ratio DRIEA convergent vers un résultat quasi identique, la méthode de recherche VBRmax (25 mn≤ t ≤1440 mn) majore ce résultat d'environ 30 % (dans le cas présent, calcul du volume calé sur t = 1440 mn). L'ensemble des tableaux d'estimation sont détaillés en annexe. Dans le cadre du présent AVP, le volume retenu est pris égal à la moyenne de ces trois volumes estimés.

1.2.1.7 Demandes spécifiques de la DDT

La DDT 78 fait les demandes suivantes :

- intégrer dans l'étude, les conséquences d'une pluie au-delà de la pluie 10 ans sur les noues de stockage (dimensionnées pour une pluie décennale),
- préciser la part d'infiltration dans le sol si raccordement sur des fossés non étanchés (fossés RN184 et fossés RD284),
- la période de relevée des informations sur les piézomètres, jusqu'en février 2015, mise en place par la MOE STIF a été jugée faible par la DDT 78. Bien que les données puissent être transmises en continu pendant l'instruction, l'accord doit être donné sur le dossier déposé en Mars 2015. GTGO et son MOE ont par ailleurs précisé que des piézomètres ont bien été placés sur l'ensemble des périmètres de Saint-Germain-en-Laye et Virgule Saint-Cyr.

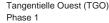
Dans le cadre de la réunion DLE du 21/07/15, la DDT a exprimé les demandes complémentaires suivantes :

- Rubrique 2240 apport au milieu aquatique de plus de 1t/j de sel dissous. La DDT a précisé qu'elle souhaitait que le calcul soit fait sur la base du jour le plus pénalisant [pas sur une moyenne de 4 mois comme cela se pratique généralement). Ce calcul est présenté au § 1.3.1.1.4.
- Infiltration / temps de vidange des bassins : la DDT a indiqué que la doctrine dans les Yvelines était un temps de vidange de 48 heures maximum (pour la vidange des bassins ainsi que pour tous les ouvrages même en infiltration). Cette analyse complémentaire est présentée au § 1.4.3.

1.2.1.8 Risque Zone humide

Des sondages pédologiques à la tarière seront effectués sur le périmètre Virgule Saint-Cyr compte tenu de la présence des deux busages transitant sous le RFN et ce afin de valider ou non la présence de zones humides.

En cas d'impact sur des zones humides, les modalités de compensation devront être décrites dans le DLSE.


La DDT indique que toute zone humide atteinte doit être compensée à 100% sur le périmètre du projet et à 150% sur une autre zone. Les résultats relatifs aux investigations zones humides réalisées pour le compte de GTGO ont conclu à l'absence de zone humide.

La DDT 78 indique que si des eaux transitent par des fossés non étanchées, il conviendra d'évaluer la part infiltrée (nota : aujourd'hui les fossés GCO constituent les seuls réseaux existants) et plus généralement qu'il convient de distinguer dans le dossier les quantités d'eaux rejetées dans un réseau et les quantités d'eaux qui s'infiltrent.

La DDT 78 confirme qu'il n'y a pas de sujet captage eau potable sur le secteur Virgule Saint-Cyr (ni même sur le secteur d'étude de Saint-Germain-en-Laye).

Dans le cadre du DSLE, les précisions suivantes ont été apportées par la DDT78 le 23/10/14 :

- Bassins versant amont Virgule Saint-Cyr rattaché à la rubrique 2.1.5.0
- La DDT 78 n'applique pas la rubrique plan d'eau pour les bassins ou noues de stockage
- Rubriques en phase travaux :
- √ 1.1.2.0 : si pompage
- √ 2.2.1.0 : si rejet des eaux vers le milieu naturel en phase travaux

NOTE ASSAINISSEMENT NOTE TECHNIQUE

Dans le cadre de la présente note technique, les points suivants sont rappelés ou précisés :

- 1) le réseau des noues/tranchées de rétention et infiltration est dimensionnée pour la pluie 10 ans conformément aux hypothèses validées par la DDT dans le cadre des réunions techniques GTGO/DDT. Une estimation de la période de retour à laquelle les noues/tranchées de rétentions sont susceptibles de déborder au-delà de la pluie de période de retour 10 ans est également décrite au § 1.4.2.1.
- 2) Concernant la part d'infiltration dans le sol, celle-ci reste faible au regard du coefficient d'infiltration de 10⁻⁶ m³/m²/s (sol peu perméable) (cf. rapport Fondasol G2 AVP). Le principe proposé reprend celui des fossés d'infiltration existants de la RN184 et de la RD284 en l'absence de tout autre réseau d'assainissement. Le bilan des débits infiltrés dans le sol est reporté au § 2.2.1.4 Bilan de l'infiltration dans le sol sur le périmètre Saint-Germain et au § 2.2.2.3 Bilan de l'infiltration dans le sol sur le périmètre Virgule Saint-Cyr.
- 3) Concernant le suivi piézométrique, la demande de la DDT service instructeur constitue une demande normale pour couvrir une période représentative (suivi à maintenir sur toute la période des travaux et à la mise en service + 1 an min. Les résultats seront par ailleurs intégrés en phase PRO.

1.3 PRINCIPES TECHNIQUES PROPOSEES EN PHASE AVP

1.3.1 Assainissement Périmètre Saint-Germain-en-Laye (SP1)

1.3.1.1 Assainissement de la plateforme

1.3.1.1.1 Plateforme minérale

L'évacuation des eaux de ruissellement recueillies dans la gorge des rails se fait via des ouvertures réalisées dans le fond de la gorge du rail. Ces eaux transitent par ces ouvertures vers des caniveaux transversaux ou des boîtes de drainage espacées de 40 m maximum type acodrain ou équivalent.

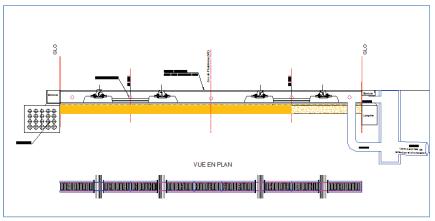
Le caniveau transversal sera composé :

- √ d'une grille en fonte pour capter les eaux de ruissellement,
- d'éléments en béton préfabriqués avec réservations qui permettent de collecter les eaux drainées dans les sections engazonnées.

Ce type de matériel est usuel pour la pose de rail classique sur béton. Les rails à gorges seront percés à chaque caniveau (évacuation des eaux de la gorge).

Ce type de pose concerne sur le périmètre Saint-Germain-en-Laye (SP1) :

- ✓ Les traversées de carrefour,
- ✓ La séquence de l'avenue Kennedy longeant le complexe sportif.


Chaque caniveau sera connecté au réseau d'assainissement de la plateforme parallèle au GLO grâce à une boîte de branchement en béton préfabriqué. Ses dimensions indicatives au stade AVP sont d'environ 50 x 50. Ce réseau d'assainissement se situera dans les sur-largeurs du GLO. Le schéma ci-dessous illustre le principe d'assainissement envisagé.

19/127

Extrait carnet de coupe réf. TG01-C5081-AVP-ARTE-PLA-ASS-D-000-58111-A01

En station, le revêtement sera minéral. Des caniveaux transversaux seront implantés à chacune de leurs extrémités :

- en amont pour récupérer les eaux des zones engazonnées ou minérales situées en amont,
- en aval pour récupérer les eaux de la station.

De la même façon que pour les stations, les carrefours seront traités en surfaces minérales. Des caniveaux transversaux seront implantés à chacune de leurs extrémités.

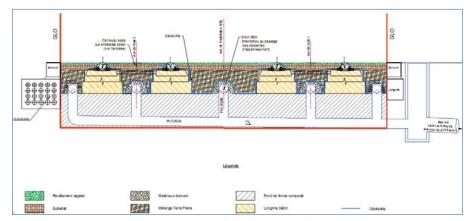
Des caniveaux transversaux seront également implantés en limite entre zone engazonnée et zone de revêtement imperméable.

1.3.1.1.2 Plateforme végétalisée

Dans le cadre de la phase AVP V0, les séquences du projet sont végétalisées sauf au droit des carrefours et des stations

Dans un souci de réduction des surfaces imperméabilisées, il est proposé en phase AVP la réalisation de plateformes végétalisées sur longrines sur près de 1800 ml du projet en cohérence avec le parti d'aménagement général et en fonction des premiers résultats de l'étude géotechnique G2 AVP (nature des sols, coefficient d'infiltration). L'intérêt de ce type de pose est principalement la réduction des niveaux d'imperméabilisation et des coefficients de ruissellement de l'emprise considérée ou à défaut la limitation de l'impact imperméabilisation supplémentaire lorsque le tracé emprunte des emprises actuellement situées en lisière de forêt donc faiblement imperméabilisées.

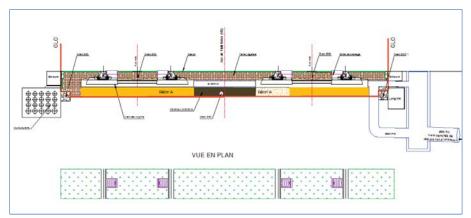
Tangentielle Ouest (TGO)
Phase 1


NOTE ASSAINISSEMENT NOTE TECHNIQUE

Le revêtement des plateformes végétalisées sur longrine est perméable. Dans le cadre du présent AVP V0, il est considéré un niveau d'imperméabilisation équivalent à 60 % ou C ≈ C imp ≈ 0,60 (la moitié de la surface de la plateforme étant en contact direct avec un sol peu perméable est considéré à 0,2 et le reste de la plateforme situé à l'aplomb des longrines béton étant considéré à 0,9 ; ce coefficient équivalent pourra être affiné en phase PRO). Ce coefficient de ruissellement peut être recoupé par ailleurs avec un coefficient correspondant à un espace libre en ville moyenne pour une morphologie de terrain plat à moyen sur des terrains peu perméable (coefficient compris en 0,5 à 0,6 cf. ouvrage Les Réseaux d'assainissement de Régis Bourrier).

Afin d'acheminer les eaux de la plateforme jusqu'au collecteur, un système de drainage sera mis en place entre les rails. Les eaux ruisselants en surface seront captées par des caniveaux transversaux disposés tous les 40 m max. comme pour le cas de la plateforme minérale et à chaque point bas. Cette technique de plateforme végétalisée sur longrine permet de réduire le niveau d'imperméabilisation de la plateforme et donc le volume des eaux de ruissellement drainées par celle-ci. En outre, le temps de concentration (durée mise par la goutte d'eau la plus éloignée pour atteindre l'exutoire constitué par le caniveau) est augmenté, contribuant ainsi à produire un effet tampon. Au-delà de la capacité tampon propre à la structure drainante et pour des épisodes pluvieux plus importants, l'excédent est repris par un réseau de drains en fond de tranchée qui achemine dans tous les cas les eaux pluviales vers le réseau public aval.

La coupe de principe ci-après illustre ces dispositions techniques :



Extrait carnet de coupe réf. TG01-C5081-AVP-ARTE-PLA-ASS-D-000-58111-A01

Dans les linéaires du projet à forte courbe ou dans les faibles linéaires de plateforme compris entre deux traversées minérales de chaussée, il est proposé de retenir une pose végétalisée classique sur béton. Le principe général d'assainissement de la plateforme est sensiblement équivalent à celui d'une pose sur béton. Dans ce cas, le recueil des eaux d'infiltration s'effectue au niveau du béton de calage des voies et ce sous le revêtement perméable comme illustré sur la coupe de principe ci-dessous :

Extrait carnet de coupe réf. TG01-C5081-AVP-ARTE-PLA-ASS-D-000-58111-A01

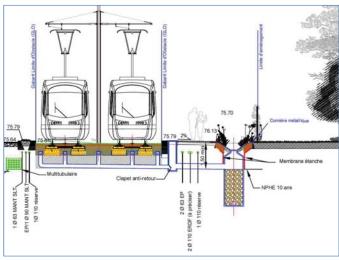
1.3.1.1.3 Raccordement au collecteur

Compte tenu de l'absence de réseau d'assainissement (à l'exception d'un collecteur unitaire DN300 à faible profondeur sur l'avenue Kennedy), l'assainissement de la plateforme sera raccordé à des tranchées de rétention/infiltration ou à des bassins enterrés à débit régulés. Des tabourets et/ou regards d'assainissement seront mis en place à chaque changement de direction en rive de la plateforme. Ce principe est décrit plus loin par séquence du projet.

1.3.1.1.4 Entretien du système de drainage

Le système de drainage devra être entretenu de manière efficace afin de pouvoir garantir à terme la bonne tenue de la plateforme et des revêtements de surface. Pour ce faire, les dispositifs de drainage devront pouvoir être facilement accessibles par le futur exploitant de ces équipements. Comme pour l'assainissement classique en voirie urbaine, les regards de visite seront dotés d'une décantation de 30 cm.

Les coupes types du carnet de coordination réf. TGO1-C8000-AVP-ARTE-PLA-DEV-X-000-800-01-A01 permettent d'illustrer les conditions d'accessibilité aux équipements d'assainissement de la plateforme :


- Tampons d'accès en rive de plateforme sur lesquels sont raccordés les drains transversaux DN200 de plateforme; ces tampons sont eux-mêmes raccordés aux tranchées de rétention/infiltration via des regards à grille en fond de noue végétalisée qui permettent de visualiser l'état des exutoires DN200
- Cheminement piétons de 3 m de large ou voie verte de 4 m permettant l'accès d'un véhicule d'entretien,

NOTE ASSAINISSEMENT NOTE TECHNIQUE

Le schéma ci-dessous illustre ces conditions d'accessibilité :

La tranchée est utilisée comme un bassin de rétention et d'infiltration et constitue un exutoire à part entière en l'absence d'autre exutoire assainissement.

En phase travaux

Les apports de terre vers la tranchée doivent être évités. Aussi la tranchée doit être réalisée dans les dernières étapes du projet en séparant les surfaces productrices de fines des surfaces drainées.

Le dimensionnement de l'ouvrage doit être respecté pour éviter tout risque de débordement par diminution du volume de stockage,

Les matériaux utilisés doivent avoir une porosité utile suffisante et doivent être propres pour éviter tout colmatage prématuré : mise en œuvre soignée à l'exécution avec mise en place d'un géotextile enveloppe des matériaux poreux (n = 0,3) pour éviter la migration de fines vers les matériaux poreux.

Un contrôle de fin de réalisation consistera à vérifier la capacité de stockage et de vidange par des essais de remplissage.

Entretien préventif

21/127

L'entretien concernera tous les ouvrages annexes à la tranchée et la surface de la tranchée :

- Nettoyage des regards au droit de la tranchée tous les 40 ml reprenant les eaux pluviales de la plateforme tram-train d'une part et les eaux de ruissellement de surface du trottoir longeant la plateforme :
- Ramassage des déchets d'origine humaine ou les végétaux qui pourraient obstruer les dispositifs d'injection locale depuis la plateforme tram-train,

 Nettoyage de la partie supérieure de la tranchée marquée par un fossé en tête de faible profondeur dont le fond sera traité en cailloux et les abords végétalisés.

Entretien curatif

L'entretien curatif est réalisé dès lors que le fonctionnement hydraulique de la tranchée n'est plus assuré (débordement fréquent de la tranchée) :

- Décolmatage des surfaces drainantes,
- Intervention sur les matériaux de surface
- Remplacement le cas échéant des matériaux à l'intérieur de la structure drainante.

A titre indicatif. le coût d'entretien d'une tranchée drainante serait de l'ordre de 1 €HT/m³/an.

Pollution accidentelle

Dans le cas présent, le risque de pollution est faible car les tranchées de rétention/infiltration proposées collectent principalement les eaux de ruissellement de la plateforme tram-train et des espaces piétons que longent celle-ci (trottoir, voie verte piétons/cycles accessibles ponctuellement pas un véhicule d'entretien). En outre, les eaux pluviales de voirie sur l'avenue Kennedy seront collectées via des collecteur DN2000 de rétention à débit régulé permettant d'isoler une pollution accidentelle via une vanne manuelle avant pompage. En outre, les tranchées de rétention/infiltration sont à linéaire limité permettant de cantonner une pollution accidentelle le cas échéant.

En rive de la RN184, une analyse complémentaire a été détaillée au § 2.2.1.1 Séquence RN184 de la présente note.

Pollution saisonnière

La pollution saisonnière est une relation avec des événements saisonnièrs liés à l'entretien de la route. Il s'agit notamment des salages hivernaux. Le fondant le plus courant est le chlorure de sodium (NaCl).

Les apports en chlorure de sodium sur les routes sont très variables selon les régions et les climats. Ils varient entre 0.5 à 30 T/an/km. Pour un trafic de 10 000 véhicules/jour et compte tenu du climat de la région parisienne, on prendra un ratio de 500 kg/hectare de voie/an.

Les apports en chlorure de sodium sont mis en œuvre pendant les périodes de gel, mais leur élimination est progressive sur une durée estimée à 4 mois. On peut également estimer seulement que 70 % du sel déposé sur les voies sera repris par les eaux, soit 350 kg/hectare de voie par an.

L'apport au milieu aquatique (charge annuelle*surface de chaussée) reste bien inférieur aux taux en application dans la rubrique de la rubrique 2.2.4.0.¹ relative à la nomenclature des opérations soumises à autorisation ou à déclaration (20 t/i de sels dissous si le débit est supérieur à 0.5 m³/s).

¹ Installations ou activités à l'origine d'un effluent correspondant à un apport au milieu aquatique de plus de 1 t / jour de sels dissous (D),

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

La charge est égale à :

 $c \ NaCl = \frac{Ch \arg e \ annuelle \ x \ surface \ de \ chauss\'{e}e}{Hauteur \ d'eau \ en \ 4 \ mois \ x \ surface \ active \ du \ bas \ sin \ versant \ routier}$

Avec:

- surface chaussée de 0.8619 ha (RN184 jusqu'au carrefour avec la RD190 et entre RD190 et entrée avenue Kennedy + Avenue Kennedy : 200 premiers ml de Kennedy et 300 derniers ml de Kennedy
- surface active du bassin versant routier 0.775 ha;
- une pluviométrie moyenne sur 4 mois de 0.212 m.

Cette concentration en NaCl est alors égale à 183 mg/L.

Au niveau de la pollution saisonnière, la concentration dans les rejets est inférieure à la concentration correspondant à une classe de qualité d'eau anciennement définie comme très bonne.

Tableau 1 : Grille d'évaluation de la pollution saisonnière par le Chlorure de Sodium

Polluant	Objectif de qualité (mg/L)								
	Très bon	Bon	Moyen	Mauvais					
NaCl concentration moyenne mg/l	200	225	250	750					

1.3.1.2 Assainissement de la voirie et des espaces publics

L'ensemble des eaux pluviales de chaussées et de trottoirs sera guidé vers des fils d'eaux, via des pentes minimales d'aménagement. Le long de ces fils d'eau, le projet prévoit le rétablissement ou la création de bouches avaloirs régulièrement réparties (reprenant 600 m² à 800 m² de surface) selon une inter-distance moyenne de 50 ml environ afin de guider les eaux de ruissellement publiques vers le réseau principal de collecte lorsque celui-ci existe ou vers des rétentions enterrés à débit régulé lorsqu'il n'existe pas de réseau (mise en conformité de l'existant sur l'Avenue Kennedy par exemple). Ce réseau de surface aura un diamètre nominal minimum de 300 mm (DN 300 mm) et convergera généralement vers des dispositifs de rétention: collecteur DN2000 enterré ou tranchée de rétention/infiltration. Il est à noter qu'à défaut d'exutoire en gravitaire, les débits régulés (très faibles) seront :

- Soit relevés (régulation associée à une pompe de relevage vers l'unique réseau unitaire DN300 sur la séquence minérale de l'avenue Kennedy),
- Soit intégrés aux surfaces d'infiltration des tranchées de rétention/infiltration et dimensionnés en fonction du coefficient d'infiltration K défini plus haut.

Concernant les pentes d'aménagement des espaces publics, elles seront conformes aux règles de dimensionnement relatives à l'accessibilité de la voirie aux personnes handicapées. En cas de pentes transversales (comprises normalement entre 0,5 % et 2 %) ou longitudinales (normalement inférieures à 4 %) supérieures aux seuils requis, un Dossier de demande de dérogation devra être établi.

Concernant les pentes sur chaussée, Les pentes transversales des voiries devront être comprises entre 1,5 % et 2,5 %. La pente longitudinale minimale acceptable pour éviter la stagnation de l'eau dans les cas contraints devra être au moins de 0,5 % (c'est le cas en particulier sur l'avenue Kennedy où un point bas intermédiaire est proposé sur les 300 ml situés entre la station Camp des Loges et le carrefour avec la RD284, la pente en long actuelle étant très faible).

Le projet prévoit par ailleurs des caniveaux en asphalte au droit des fils d'eau et notamment en cas de faibles pentes.

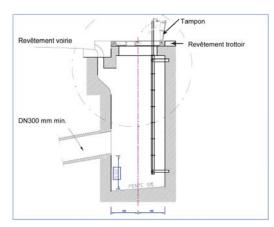
Concernant les vues de bordures usuelles qui seront recherchées pour le projet, on distinguera :

- vue de bordure chaussée/trottoir = 14 à 15 cm,
- vue de bordure au droit des bateaux de trottoir = 2 cm.
- vue de bordure au droit des seuils piste cyclables/chaussées = 0 cm,
- vue de bordure en plateau surélevé entre chaussée et trottoir = 2 cm,
- vue de bordure en chaussée et sur-largeur GLO = 15 cm.

NOTE ASSAINISSEMENT NOTE TECHNIQUE

1.3.2 Assainissement Périmètre Virgule Saint-Cvr (SP2)

Celui-ci est décrit spécifiquement au §2.2.2.

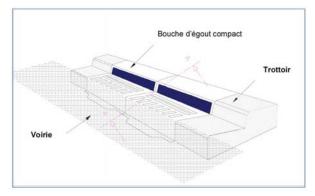

1.4 DEFINITION DES OUVRAGES TYPES

Les gestionnaires de l'assainissement pour la DIRIF, le Dép.78 et la Ville de Saint-Germain-en-Laye n'ont pas fourni de recueil spécifique des ouvrages type. Sont joints en annexe à la présente note, le Règlement Assainissement de la Ville de Saint-Germain et les prescriptions générales associées.

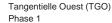
1.4.1 Ouvrages généraux

Les schémas ci-dessous présentent en coupe des équipements type :

- un raccordement de bouche avaloir sur ovoïde existant ou dévié visitable (cas éventuellement au niveau du réseau existant à hauteur de la Piscine Olympique),
- un regard visitable type avec raccordement DN 300 mm (cas le plus courant),
- des bouches avaloirs visitables par exemple dans le cas d'un fil d'eau en rive du GLO lorsque la sur-largeur est limitée à la bordure GLO,
- Un exemple de caniveau type acodrain pour plateforme et un exemple de mise en œuvre,



Exemple de bouche avaloir standard - Figure 1


Exemple de bouche avaloir dans emprise réduite - Figure 2

Exemple de caniveau de plateforme type Acodrain - Figure 3

Exemple de mise en œuvre type T3 - Figure 5

NOTE ASSAINISSEMENT NOTE TECHNIQUE

1.4.2 Ouvrages spécifiques

1.4.2.1 Tranchée de rétention et infiltration

Dans le cadre du présent projet, l'absence d'exutoire et la nécessité de collecter et stocker les eaux pluviales générées par le projet ont conduit à proposer la technique de la tranchée de rétention et infiltration. En effet, aujourd'hui les seuls dispositifs de collecte des eaux de ruissellement de voirie sur Saint-Germain-en-Laye hors agglomération et en lisière de forêt sont constitués par des fossés d'infiltration.

Ces tranchées font généralement 0,70 m à 1 m de large. Leur profondeur a été calée pour tenir compte des différentes contraintes techniques suivantes :

- Calage de l'exutoire en sous face de la plateforme à environ -1,50 m sous le Z Rail au droit du point bas du sous bassin versant considéré; cette cote constituera le NPHE 10 ans,
- Calage du volume de rétention 10 ans en dessous de ce 1,50 m,
- Ajustement de la profondeur et de la longueur de tranchée sous ce 1,50 m en fonction du débit à infiltrer. Pour ce faire, le calcul a été effectué en référence au Guide des Techniques Alternatives en Assainissement Pluvial (CERTU):
 - Pré-dimensionnement de la tranchée pour le volume à stocker; le calcul du volume est effectué selon la formule suivante: V stocké = (2p-iL)nLl/2 avec L<p/i et:
 - p : profondeur
 - L : longueur
 - n: porosité
 - i : pente longitudinale
 - Puis vérification du débit de fuite de la tranchée de rétention sur la base d'un coefficient K ou vitesse d'infiltration de 10⁻⁶ m³/m²/s; par exemple pour un débit de fuite de 0,06 l/s, la surface d'infiltration nécessaire est de 60 m² environ; la surface efficace d'infiltration est ensuite évaluée dans les deux configurations suivantes:
 - Eaux pluviales non propres / absence de dispositif d'épuration / entretien non régulier : surface d'infiltration résultante à prendre en compte = 1/3 (Surface des parois non étanchées Sp)
 - Eaux pluviales propres / absence de dispositif d'épuration / entretien non régulier : surface d'infiltration résultante à prendre en compte = 1/3 (Surface des parois non étanchées Sp + Surface de la base de la tranchée Sb)

Dans le cadre de la phase AVP, il a été considéré une surface d'infiltration résultante égale à 1/3 de la Surface des parois non étanchées (Sp), ce qui est sécuritaire.

27/127

29/127

Exemple:

	Plate	forme	
Stockage par tranchée de rétention :			
Hauteur utile NPHE 10 ans sous exutoire drain plateforme =	2	m	
Largeur utile =	1	m	
Longueur utile =	70	m	
porosité =	0,3		
pente longitudinale =	0,005	m/m	
Volume stocké =	39	m3	
Volume à stocker =	35	m3	
Vérification du débit de fuite de la tranchée de rétention :			
vitesse =	0,000001	m3/m2/s	
Surface d'infiltration nécessaire calée sur qf =	71	m2	
Surface des parois non étanchées à - 1,5 m sous le TN Sp =	280	m2	
Surface de la base Sb =	70	m2	
Test Surface efficace à 1/3(Sp+Sb) =	117	m2	
Test Surface efficace à 1/3(Sp) =	93	m2	Ok

La partie haute de la tranchée sur le premier mètre cinquante environ est remplie de cailloux de porosité n = 0,3 et munie de membranes latérales étanches pour éviter les infiltrations avec le premier mètre des structures de chaussée et plateforme.

Au-delà du premier mètre cinquante, la tranchée est constituée de cailloux de porosité n = 0,3 dans une membrane perméable (géotextile) permettant l'infiltration sur les parois et en fond sur la base. Un drain longitudinal est également mis en œuvre en fond de la tranchée.

Au-delà d'un épisode pluvieux décennal, la tranchée se met en charge avec si besoin un dispositif de clapet anti-retour calé à -1,5 m du point le plus bas et ce pour protéger le réseau de drain sous la plateforme. Toutefois, il peut être intéressant de permettre une mise en charge des réseaux au-delà de la plus 10 ans tant côté plateforme (tout en veillant toutefois à protéger la structure de la plateforme et les voies) que côté accotement pour gérer les épisodes pluvieux an delà de T10 ans.

En effet, on dispose d'une sécurité supplémentaire de stockage avant débordement sur une hauteur de 1,50 m environ.

Le volume supplémentaire par rapport à une échelle T10 / T20 / T50 ans peut être évalué de la manière suivante au ml de tranchée de rétention/infiltration.

Les facteurs proposés pour l'estimation des volumes V20, V50, V100 ans sont les suivants :

- f = 1,25 pour l'occurrence T20, soit V20 ans = 1,25 x V10 ans
- f = 1,6 pour l'occurrence T50, soit V50 ans = 1,6 x V10 ans
- f = 2 pour l'occurrence T100, soit V100 ans = 2 x V10 ans

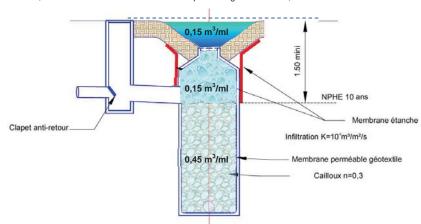
Chaque tranchée de rétention/infiltration a une largeur moyenne de 1 m et une profondeur de 2 m en moyenne sous le niveau du point de collecte le plus bas de la tranchée.

Le Niveau des Plus Hautes Eaux 10 ans (NPHE 10ans) de la tranchée est ainsi calé sur ce niveau du point de collecte le plus bas de la tranchée. Sur la base d'une porosité de 30 %, cette partie inférieure de la

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

tranchée permet donc de stocker un volume équivalent d'environ **0,4 m³/ml à 0,5 m³/ml** avec une profondeur de 1,5 m à 2 m et une pente longitudinale de 0,5 %.

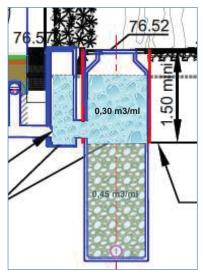

Pour des pluies d'occurrence supérieure, le volume à stocker par ml de tranchée serait ainsi de :

- 1,25 x 0,45 m³/ml \approx 0,6 m³/ml pour T20 ans
- 1,6 x 0,45 m³/ml ≈ 0,7 m³/ml pour T50 ans
- 2 x 0,45 m³/ml ≈ 0,9 m³/ml pour T100 ans ou 2 épisodes T10 ans

Au-delà donc de la pluie 10 ans, la tranchée de rétention/infiltration et le réseau de drainage de la plateforme se mettent en charge.

La géométrie des noue/tranchée de rétention/infiltration et du réseau de drainage sous la plateforme permettent de disposer d'une capacité de stockage supplémentaire :

- → au droit du réseau de drains DN200 sous plateforme : 5 drains x 0,03 m²/ml ≈ 0,15 m³/ml au-delà du NPHE 10 ans
- → au droit d'une noue/tranchée de rétention et infiltration : ≈ 0,30 m³/ml au-delà du NPHE 10 ans
 - ≈ 0,15 m³/ml supplémentaire jusqu'à la sous-face du substrat en fond de noue (hauteur de 70 cm environ testé sur un linéaire de 100 m) avec une pente longitudinale de 0,5%
 - ≈ 0,15 m³/ml au droit de la noue avec une pente longitudinale de 0,5%



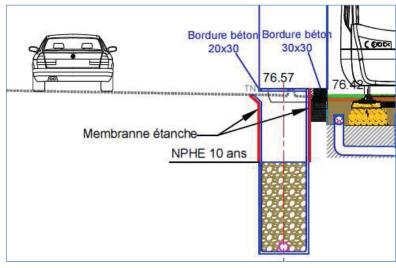
→ ou au droit d'une tranchée de rétention et infiltration sur la base d'une hauteur disponible efficace de 1,2 m entre le NPHE 10 ans et le niveau fini aménagé et une pente de 0,5 % : ≈ 0,30 m³/ml supplémentaire,

31/127

On obtiendrait ainsi une capacité supplémentaire théorique de stockage y compris réseaux de drains sous la plateforme de l'ordre de 0,30 m³/ml + 0,15 m³/ml = 0,45 m³/ml. Toutefois cette capacité supplémentaire est à prendre avec prudence. En l'état, on peut considérer qu'un stockage de l'épisode pluvieux T20 ans voire T50 ans est envisageable. Dans le cas présent, il est considéré un débordement audelà de la pluie 20 ans dans une configuration où les noues/tranchées de rétention/infiltration reprendraient également la surverse T20 ans des bassins de rétention sous voirie dimensionnés pour T10 ans.

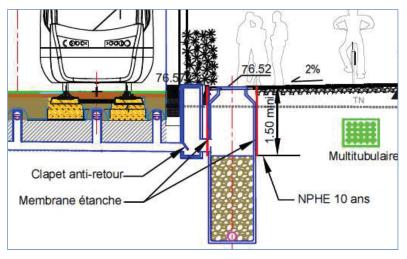
	Noue N01	Noue N02	Noue N03	Noue N04
age par tranchée de rétention :				
Hauteur utile NPHE 10 ans sous exutoire drain plateforme =	2 m	3 m	2 m	2 m
Largeur utile =	1 m	1,3 m	1,3 m	1 m
Longueur utile =	75 m	90 m	260 m	90 m
Profondeur / pente =	400 m	600 m	400 m	400 m
porosité =	0,3	0,3	0,3	0,3
pente longitudinale =	0,005 m/m	0,005 m/m	0,005 m/m	0,005 m/m
Volume stocké =	41 m3	98 m3	137 m3	48 m3
Volume V10 à stocker =	38 m3	80 m3	129 m3	35 m3
Réserve volume capable stocké - volume V10 nécessaire =	3 m3	18 m3	8 m3	13 m3
Réserve volume de stockage au dessus du NPHE 10 ans (*) =	23 m3	27 m3	78 m3	27 m3
Réserve globale volume de stockage =	26 m3	45 m3	86 m3	40 m3
Volume supplémentaire à stocker T20 (0,25xV10) =	9 m3	20 m3	32 m3	9 m3
Volume supplémentaire à stocker T50 (0,6xV10) =	23 m3	48 m3	77 m3	21 m3
(*) sur la base de 0,3m3/ml				
	BR01	BR02	BR05 et BR06	BR07
Volume éventuel surverse T20 bassins sous voirie BR vers noue N =	10 m3	19 m3	30 m3	8 m3
Volume éventuel surverse T50 bassins sous voirie BR vers noue N =	23 m3	46 m3	71 m3	19 m3
Volumes cumulés surverses T20 Noue N + Bassin BR =	19 m3	39 m3	62 m3	17 m3
Volumes cumulés surverses T50 Noue N + Bassin BR =	45 m3	94 m3	148 m3	41 m3

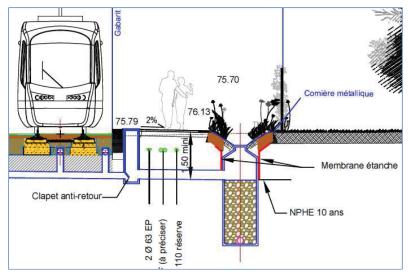
Il convient ici de rappeler qu'en cas d'un 2ième épisode T10 ans, il n'est pas possible de sur-verser vers un réseau existant comme c'est le cas usuellement (en général stockage du volume V10 ans et surverse de Q10 ans vers un réseau aval).



Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE


Les schémas ci-après illustrent par ailleurs les trois configurations de tranchées de stockage/infiltration rencontrées dans le cadre du projet :


Tranchée de rétention / infiltration des eaux de voirie RN184

Tranchée de rétention / infiltration des eaux de ruissellement plateforme + voie verte

Tranchée de rétention / infiltration des eaux de ruissellement plateforme + trottoir couronnée en tête par une noue de collecte directe des eaux de ruissellement de trottoir

Tangentielle Ouest (TGO)
Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

1.4.2.2 Bassin de rétention enterré DN2000

Ce type d'ouvrage est envisagé en rétention enterré lorsqu'un dispositif de type noue/tranchée de rétention et infiltration n'est pas envisageable.

Ces collecteurs surdimensionnés seront équipés :

- de regards de visites jouant également rôle de ventilation.
- des tous les équipements nécessaires à leur exploitation,
- d'un régulateur de débit manuel de type vortex (plage de débits régulés relativement faible compte tenu des petits bassins versants à récupérer)
- d'un équipement de traitement des hydrocarbures en aval du débit régulé et ce avant le raccordement au réseau principal du concessionnaire si l'exploitant en fait la demande.

Le calcul des volumes compensatoires a été effectué selon deux approches :

- selon la Méthode des Volumes (méthode préconisée par le Dép.92), pour une pluie de période de retour 10 ans et un débit de fuite admissible de 11/s/ha.
- 2) selon une approche au ratio de 450 m3/ha actif pour une plus de période de retour 10 ans (pluie 24h) avec un débit de fuite admissible de 1l/s/ha (ratio extrait d'un document en cours d'élaboration par la DRIEE réf. Doctrine relative à l'instruction des dossiers de rejets d'eaux pluviales dans le cadre de la police de l'eau (rubrique 2.1.5.0.) et de la police des ICPE).

Les résultats obtenus sont sensiblement équivalents.

Application au projet :

Les bassins de rétention enterrés DN2000 des eaux de voirie (BR01, BR02, BR05, BR06, BR07) ou éventuellement de plateforme (BR03, BR04) sont dimensionnés pour une pluie de période de retour 10 ans. Au-delà de T10, les collecteurs DN2000 se mettent en charge avec un débordement prévisible sur la voirie publique. Les débits régulés de ces bassins sont ensuite infiltrés au droit des tranchées d'infiltration à défaut de tout autre exutoire; ceci n'est pas possible pour les bassins BR03 et BR04 dans la section minérale le long du Complexe Sportif raccordés à débit régulé et relevé vers le collecteur unitaire DN300 Ville de Saint-Germain-en-Laye.

Toutefois, on pourrait envisager le cas échéant une surverse au-delà de T10 ans pour l'épisode pluvieux T20 ans vers les tranchées de rétention/infiltration pour les bassins de voirie BR01, BR02, BR05, BR06, BR07 en utilisant la capacité de stockage complémentaire des noues/tranchées de rétention/infiltration comme décrit précédemment (dans ce cas les noues/tranchées reprendraient au plus la surverse T20 ans des bassins sous voirie BR cumulé avec leur propre surverse T20 ans).

Au-delà de T20 ans, cela nécessiterait d'approfondir les tranchées de rétention/infiltration pour intégrer ces compléments de volume. Le tableau ci-dessous donne une approche des sur-profondeurs nécessaires au droit des noues/tranchées de l'avenue Kennedy (sur-profondeurs non prise en compte dans le coût d'objectif AVP). Toutefois, les prescriptions du SDAGE se limitent à une rétention pour une pluie 10 ans hors agglomération.

35/127

		BRO	11	BR0	2	BRI	03	BR	14	BR05 e	t BR06	BR07
Stockage par DN 2000 enterrée pour		BR n⁴ V		BR nº2 Vo		BR n ³ Pla		BR n ⁴ Pla		BR n*5 et 6		BR n7 Voirie
	Linéaire DN 2000 =		ml	26			ml	50		41		11 ml
	Pente =	0,005	m/m	0,005	m/m	0,005	m/m	0,005	m/m	0,005	m/m	0,005 m/m
	pleine section avale =		m3		m3		m3	150		123		33 m3
Vo	olume V10 à stocker =	38	m3	77	m3	106		102	m3	118		32 m3
								BR03+BR04		réparti au pro		sous-bassins
				Volu	me stock	é à pleine sect				27		
						Volume à	stocker =	209	m3 Ok	14	ml	
Surve	rse T20 (0,25 x V10) =	10	m3	19	m3	27	m3	26	m3	30	m3	8 m3
	erse T50 (0,6 x V10) =		m3		m3		m3	61		71		19 m3
Surverse 2ième ép	oisode T10 (1 x V10) =	38	m3	77	m3	106	m3	102	m3	118	m3	32 m3
						pas d'i	exutoire po	ssible en tran	chée			
		Noue	N01	Noue N	102					Noue	N03	Noue N04
Approfondissement tranchée Surver	se T20 (0,25 x V10) =	0,6	m	1	m					- 1	m	0,5 m
	Largeur utile =	- 1	m	1,3	m					1,3	m	1 m
	Longueur utile =	75	m	90	m					260	m	90 m
	Profondeur / pente =	120	m	200	m					200	m	100 m
	porosité =	0,3		0,3						0,3		0,3
	pente longitudinale =	0,005	m/m	0,005	m/m					0,005	m/m	0,005 m/m
	Volume stocké =	10	m3	28	m3					39	m3	8 m3
Approfondissement tranchée Surve	erse T50 (0.6 x V10) =	1.2	m	2	m					1.5	m	1
	Largeur utile =		m	1.3						1.3		1 m
	Longueur utile =	75		90						260		90 m
	Profondeur / pente =	240		400						300		200 m
	porosité =	0.3		0.3						0.3		0.3
	pente longitudinale =	0.005		0.005						0.005	m/m	0.005 m/m
	Volume stocké =	23	m3	63	m3					87	m3	21 m3
ofondissement tranchée surverse 2ième éc	picode T10 (1 v V/10) -	,	m	2.5	m	-				2	m	2 m
activistici della della contra	Largeur utile =		m	1.3						1.3		1 m
	Longueur utile =	75		90		_				260		90 m
	Profondeur / pente =	400		500						400		400 m
	porosité =	0.3		0.3		_				0.3		0.3
	pente longitudinale =	0.005		0.005						0.005	m/m	0.005 m/m
	Volume stocké =		m3		m3					137		48 m3

1.4.3 Temps de vidange des noues et bassins

Suite à la réunion DLE du 21/07/15, la demande DDT d'une vidange des bassins y compris pour les tranchées de rétention/infiltration en 48 heures a fait l'objet d'une analyse complémentaire développée ciaprès.

1.4.3.1 Calcul des temps de vidange des ouvrages dimensionnés en phase AVP

Dans le cadre du projet TGO périmètre STIF, le débit de fuite est assuré par infiltration à défaut de tout autre exutoire sur le périmètre de Saint-Germain-en-Laye (fonctionnement actuelle de la RN184, de la RD284 et de 50 % de l'avenue Kennedy).

Le temps de vidange par infiltration approché est T ≈ V 10 / Qf.

Il conviendra de se faire confirmer auprès de la DDT, l'interprétation du débit de fuite autorisé de 1l/s/ha; dans le cadre de l'AVP, il a été considéré une interprétation à l'hectare actif sur le périmètre de Saint-Germain-en-Laye.

Prenons l'exemple de l'avenue Kennedy et de la noue N01 :

- La noue N01 reprend un bassin versant actif d'environ 0,076 ha,
- Le règlement assainissement impose un débit de fuite de 11/s/ha pluie 10 ans,
- soit un débit de fuite Qf infiltré vers le milieu naturel de 0,076 l/s,
- Le volume V10 ans à stocker est d'environ 38 m³,
- Le temps de vidange par infiltration approché est T ≈ V 10 / Qf, soit dans notre cas 38 m3/(0,076 l/s/1000 en m3/s)/(24x3600 en jour) = 6 jours.

Si l'on impose le temps de vidange et si l'on respecte le débit de fuite autorisé, il en résulte un volume de stockage nécessairement moindre $V \approx T \times Qf \approx 48 \text{ h} \times 3600 \text{ s} \times 0,076 \text{ l/s/1000} \text{ en m}^3/\text{s} \approx 13 \text{ m}^3 \text{ inférieur au volume théorique V10 que l'on doit stocker.}$

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

Par conséquent, si l'on veut respecter le volume V10 tout en vidangeant en 48 heures max., il faut alors augmenter le débit de fuite Qf \approx V10 m3/(48 hx3600s) \approx 0,000237 m3/s \approx 0,237 l/s soit 0,237/0,076 ha \approx 3l/s/ha actif ; dans ce cas on ne respecte plus le débit de fuite autorisé vers le milieu naturel limité à 1l/s/ha actif. En outre, cela suppose d'augmenter la surface d'infiltration pour pouvoir évacuer ce débit de 0,237 l/s sur la base d'un débit d'infiltration de 10^{-6} m³/m²/s imposé par les résultats géotechniques et donc d'augmenter la profondeur des tranchées avec un surcoût induit non appréhendé en phase AVP.

Hauteur utile NPHE 10 ans sous exutoire drain plateforme =	2	m				
Largeur utile =	1	m				
Longueur utile =	75	m				
Profondeur / pente =	400	m				
porosité =	0,3					
pente longitudinale =	0,005	m/m				
Volume stocké =		m3				
Volume à stocker =	38	m3				
Surface active noue N01 Kennedy =	0,076					
Débit de fuite réglementaire =	1	l/s/ha				
temps de vidange estimé =	6	jours				
Volume de rétention calé sur un temps de vidange de T =	48	heures		-		
et sur le débit de fuite admissible du bassin versant actif Gf =	0,076	l/s				
V = Temps vidange x Qf =	13	m3	alors que l'on doit stocker	V10 =	41	m3
bébit de fuite calé sur un temps de vidange de 48 heures max, qf =	0.237	1/e				
Débit résultant par ha actif =		l/s/ha actif	contre 1l/s/ha actif autoris	4		
vitesse d'infiltration =		m3/m2/s	(donnée géotechnique)			
Surface d'infiltration nécessaire calée sur qf et vitesse d'infitration =	237			6 m2 en base	soit x	3
Surface des parois non étanchées Sp =	825	m2	en approfondissant la tranchée de		3.5	m
Surface de la base Sb =	75	m2				
Test Surface efficace à 1/3(Sp+Sb) =	300	m2				
Test Surface efficace à 1/3(Sp) =	275	m2	contre 10	0 m2 en base	soit x	3
		Ok				
Profondeur total de la tranchée en solution AVP base =	5	m				
Profondeur total de la tranchée pour vidange en 48 h =	8	m	sans respect du débit de	fuite de 1l/s/ha		

Dans le cas d'une interprétation du débit de fuite à l'hectare du bassin versant repris, le débit de fuite résultant est nécessairement supérieur et le temps de vidange réduit en conséquence :

- La noue N01 reprend un bassin versant d'environ 1235 m2 soit 0,12 ha,
- Le règlement assainissement impose un débit de fuite de 1l/s/ha pluie 10 ans,
- soit un débit de fuite Qf infiltré vers le milieu naturel de 0,12 l/s,
- Le volume V10 ans à stocker est d'environ 38 m³,
- Le temps de vidange par infiltration approché est T ≈ V 10 / Qf, soit dans notre cas 38 m3/(0,12 l/s/1000 en m3/s)/(24x3600 en jour) ≈ 4 jours.

Le bilan résultant des temps de vidange par séquence est le suivant. Il a été effectué selon deux approches :

SNC·LAVALIN

37/127

- Approche 1 : débit de fuite calculé sur la base de la surface active du Bassin Versant considéré (approche plus pénalisante considérée en AVP de base),
- Approche 2 : débit de fuite calculé sur la base de la surface brute du Bassin Versant considéré (approche plus favorable à la réduction du temps de vidange).

L'objectif de cette approche est d'évaluer l'incidence d'un second épisode pluvieux décennal.

1.4.3.1.1 Temps de vidange en rive de la RN184

Tranchées de rétention/infiltration pour la plateforme en sortie du RFN vers le carrefour RN184/Lisière Pereire:

		Analyse complémentaire temps de vidange (réunion DDT du 21/07/15)				
	Plate	Approche débit de fuite calculé sur la base de la surface active du BV				
	0,07	Surface active reprise par tranchée =				
l/s/ha		Débit de fuite réglementaire =				
	0,07	Débit de fuite résultant Qf =				
m3		Volume V10 à vidanger =				
jours		temps de vidange estimé V10 =				
m3		Volume V20 à vidanger =				
jours	7	temps de vidange estimé V20 =				
m3		Volume vidangé estimé au bout de 48 heures = Temps vidange x Qf =				
m3		Réserve volume capable stocké - volume V10 =				
m3		Réserve volume de stockage au dessus du NPHE 10 ans (*) =				
m3		Volume disponible résultant au bout de 48 h =				
m3	39	Volume V10 ans 2ième épisode pluvieux au bout de 48 h =				
		Approche débit de fuite calculé sur la base de la surface du BV				
	0,0875	Surface Bassin versant =				
l/s/ha		Débit de fuite réglementaire =				
	0,09	Débit de fuite résultant Qf en raisonnant à l'ha du BV =				
m3		Volume V10 à vidanger =				
jours		temps de vidange estimé V10 =				
m3		Volume V20 à vidanger =				
jours	6	temps de vidange estimé V20 =				
		_				
m3		Volume vidangé estimé au bout de 48 heures = Temps vidange x Qf =				
m3		Réserve volume capable stocké - volume V10 =				
m3		Réserve volume de stockage au dessus du NPHE 10 ans (*) =				
m3		Volume disponible résultant au bout de 48 h =				
m3	39	Volume V10 ans 2ième épisode pluvieux au bout de 48 h =				

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

Tranchées de rétention/infiltration respectivement pour la voie verte+plateforme et le Bassin Versant Est RN184 entre le carrefour Lisière Pereire et le carrefour RN184/RD190 :

				Analyse complémentaire temps de vidange (réunion DDT du 21/07/15)
RN184	BV RI	oie verte	Plat.+vo	Approche débit de fuite calculé sur la base de la surface active du BV
0 ha	0,10	ha	0,14	Surface active reprise par tranchée =
1 l/s/ha	1	l/s/ha	1	Débit de fuite réglementaire =
0 l/s	0,10	l/s	0,14	Débit de fuite résultant Qf =
0 m3		m3	59	Volume V10 à vidanger =
6 jours	6	jours		temps de vidange estimé V10 =
3 m3	63	m3	73	Volume V20 à vidanger =
7 jours	7	jours	6	temps de vidange estimé V20 =
8 m3	18	m3		Volume vidangé estimé au bout de 48 heures = Temps vidange x Qf =
2 m3	12	m3	3	Réserve volume capable stocké - volume V10 =
6 m3	36	m3	36	Réserve volume de stockage au dessus du NPHE 10 ans (*) =
5 m3	65	m3	63	Volume disponible résultant au bout de 48 h =
2 m3	62	m3	62	Volume V10 ans 2ième épisode pluvieux au bout de 48 h =
				Approche débit de fuite calculé sur la base de la surface du BV
4 ha	0,1074	ha	0,162	Surface Bassin versant =
1 l/s/ha	1	l/s/ha	1	Débit de fuite réglementaire =
1 l/s	0,11	l/s	0,16	Débit de fuite résultant Qf en raisonnant à l'ha du BV =
0 m3	50	m3	59	Volume V10 à vidanger =
5 jours	5	jours	4	temps de vidange estimé V10 = ^r
3 m3	63	m3	73	Volume V20 à vidanger =
7 jours	7	jours	5	temps de vidange estimé V20 = "
9 m3		m3	28	Volume vidangé estimé au bout de 48 heures = Temps vidange x Qf =
2 m3	12	m3	3	Réserve volume capable stocké - volume V10 =
6 m3	36	m3	36	Réserve volume de stockage au dessus du NPHE 10 ans (*) =
	66	m3	67	Volume disponible résultant au bout de 48 h = 7
6 m3	00			

Dans le cadre de l'AVP Vf, une option de collecte des eaux pluviales de la demi-chaussée Est de la RN184 (BV accotement Est) a également été testée à la demande de la DIRIF :

		Test option fossé latéral RN184 (entre Lisière Pereire et RD190) :
15 m2	145	Surface miroir =
,8 m	0,8	Profondeur =
60 ml	60	Linéaire du fossé =
,4 m	2,4	Largeur moyenne du fossé =
,0 m3/m	1,0	volume stocké /ml =
8 m3	58	volume stocké =
50 m3	50	Volume à stocker =
5 l/s	0,145	Débit d'infiltration calé sur la surface miroir =
0 l/s	0,10	Débit de fuite qf (1l/s/ha actif) =
6 jours	6	Temps de vidange estimé =

39/127

Tranchées de rétention/infiltration respectivement pour la voie verte+plateforme en carrefour RN184/RD190 :

		Analyse complémentaire temps de vidange (réunion DDT du 21/07/15)
voie verte		Approche débit de fuite calculé sur la base de la surface active du BV
05 ha	0,05	Surface active reprise par tranchée =
1 l/s/ha		Débit de fuite réglementaire =
05 l/s	0,05	Débit de fuite résultant Qf =
21 m3	21	Volume V10 à vidanger =
5 jours	5	temps de vidange estimé V10 =
26 m3	26	Volume V20 à vidanger =
6 jours	6	temps de vidange estimé V20 =
9 m3	9	Volume vidangé estimé au bout de 48 heures = Temps vidange x Qf =
5 m3	5	Réserve volume capable stocké - volume V10 =
14 m3	14	Réserve volume de stockage au dessus du NPHE 10 ans (*) =
27 m3	27	Volume disponible résultant au bout de 48 h =
26 m3	26	Volume V10 ans 2ième épisode pluvieux au bout de 48 h =
		Approche débit de fuite calculé sur la base de la surface du BV
85 ha	0,0585	Surface Bassin versant =
1 l/s/ha	1	Débit de fuite réglementaire =
06 l/s	0,06	Débit de fuite résultant Qf en raisonnant à l'ha du BV =
21 m3	21	Volume V10 à vidanger =
4 jours	4	temps de vidange estimé V10 =
26 m3	26	Volume V20 à vidanger =
5 jours	5	temps de vidange estimé V20 =
Ť		· •
10 m3	10	Volume vidangé estimé au bout de 48 heures = Temps vidange x Qf =
5 m3	5	Réserve volume capable stocké - volume V10 =
14 m3	14	Réserve volume de stockage au dessus du NPHE 10 ans (*) =
28 m3	28	Volume disponible résultant au bout de 48 h =
26 m3		Volume V10 ans 2ième épisode pluvieux au bout de 48 h =

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

<u>Tranchées de rétention/infiltration respectivement pour la voie verte et l'accotement Est RN184 entre la RD190 et l'avenue Kennedy :</u>

Analyse complémentaire temps de vidange (réunion DDT du 21/07/15)	Plat.+vo	oie verte	BV RI	N184
Approche débit de fuite calculé sur la base de la surface active du BV				
Surface active reprise par bassin enterré =	0,30		0,19	
Débit de fuite réglementaire =	1	l/s/ha	1	l/s/ha
Débit de fuite résultant Qf =	0,30	I/s	0,19	l/s
Volume V10 à vidanger =	149	m3	113	m3
temps de vidange estimé V10 =	6	jours	7	jours
Volume V20 à vidanger =	186	m3	141	m3
temps de vidange estimé V20 =	7	jours	9	jours
Volume vidangé estimé au bout de 48 heures = Temps vidange x Qf =	52	m3	33	m3
Réserve volume capable stocké - volume V10 =	02	0	00	m3
Réserve volume de stockage au dessus du NPHE 10 ans (*) =		174		m3
Volume disponible résultant au bout de 48 h =		259		m3
Volume V10 ans 2ième épisode pluvieux au bout de 48 h =		262		m3
Totalio Tio ano Zionio opiocao pianoan aa soat ao io ii =				
Approche débit de fuite calculé sur la base de la surface du BV				
Surface Bassin versant =	0,37	ha	0,20	ha
Débit de fuite réglementaire =	1	l/s/ha	1	l/s/ha
Débit de fuite résultant Qf en raisonnant à l'ha du BV =	0,37	I/s	0,20	l/s
Volume V10 à vidanger =	149	m3	113	m3
temps de vidange estimé V10 =	5	jours	6	jours
Volume V20 à vidanger =	186	m3	141	m3
temps de vidange estimé V20 =	6	jours	8	jours
Volume vidangé estimé au bout de 48 heures = Temps vidange x Qf =	63	m3	35	m3
Réserve volume capable stocké - volume V10 =	00	0	33	m3
Réserve volume de stockage au dessus du NPHE 10 ans (*) =		174		m3
Volume disponible résultant au bout de 48 h =	,	272		m3
Volume V10 ans 2ième épisode pluvieux au bout de 48 h =		262		m3

Ainsi pour les tranchées de rétention et infiltration en rive de la RN184, les temps de vidange sont supérieurs à 48 heures **pour la pluie décennale (5 à 6 jours)** :

- En cas d'un second épisode pluvieux décennal en moins de 48 heures, les tranchées de rétention/infiltration se mettent en charge jusqu'à atteindre la réserve de capacité de stockage dont elles disposent (réserve V20 ans au-dessus du NPHE 10 ans) puis débordent sur le domaine public,
- En cas d'un second épisode pluvieux décennal au bout de 48 heures, le volume vidangé en 48 heures cumulé avec la réserve de capacité de stockage dont disposent les tranchées de rétention/infiltration permettent a priori de stocker un second épisode pluvieux décennal. Cette approche sera affinée en phase PRO à l'appui des études de nivellement détaillé et des compléments de mesure de perméabilité des sols.

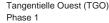
Dans tous les cas, une vidange des rétentions en 48 heures nécessiterait :

- un débit de vidange plus important et donc de déroger au débit de fuite admissible de 1l/s/ha,
- une surface d'infiltration plus importante puisque le débit de vidange est plus important pour une capacité d'infiltration égale par ailleurs à 10⁻⁶m³/m²/s.

41/127

1.4.3.1.2 Temps de vidange sur l'avenue Kennedy

Temps de vidange des noues/tranchées de rétention et infiltration :


Analyse complémentaire temps de vidange (réunion DDT du 21/07/15)	Noue	N01	Noue N	102	Noue	N03	Noue	N04
pproche débit de fuite calculé sur la base de la surface active du BV								
Surface active reprisepar noue =	0,076	ha	0,16	ha	0,26	ha	0,07	ha
Débit de fuite réglementaire =	1	l/s/ha	1	l/s/ha	1	l/s/ha	1	l/s/ha
Débit de fuite résultant Qf en raisonnant à l'ha actif =	0,076	l/s	0,16	I/s	0,26	l/s	0,07	l/s
Volume V10 à vidanger =	38	m3	80	m3	129	m3	35	m3
temps de vidange estimé V10 =	6	jours	6	jours	6	jours	6	jours
Volume V20 à vidanger =	47	m3	100	m3	161	m3	44	m3
temps de vidange estimé V20 =	7	jours	7	jours	7	jours	7	jours
Volume vidangé estimé au bout de 48 heures = Temps vidange x Qf =	40	m3	20	m3	45	m3	40	m3
		m3		m3		m3	12	
Réserve volume capable stocké - volume V10 =				m3 m3		m3 m3		m3 m3
Réserve volume de stockage au dessus du NPHE 10 ans (*) =		m3 m3		m3 m3	78 131			m3 m3
Volume disponible résultant au bout de 48 h =								
Volume V10 ans 2ième épisode pluvieux au bout de 48 h =	38	m3	80	m3	129	m3	35	m3
Approche débit de fuite calculé sur la base de la surface du BV								
Surface Bassin versant =	0,12	ha	0,20	ha	0,43	ha	0,25	ha
Débit de fuite réglementaire =	1	l/s/ha	1	l/s/ha	1	l/s/ha	1	l/s/ha
Débit de fuite résultant Qf en raisonnant à l'ha du BV =	0,12	l/s	0,20	I/s	0,43	l/s	0,25	l/s
Volume V10 à vidanger =	38	m3	80	m3	129	m3	35	m3
temps de vidange estimé V10 =	4	jours	5	jours	3	jours	2	jours
Volume V20 à vidanger =	47	m3	100	m3	161	m3	44	m3
temps de vidange estimé V20 =	4	jours	6	jours	4	jours	2	jours
Volume vidangé estimé au bout de 48 heures = Temps vidange x Qf =	21	m3	34	m3	75	m3	44	m3
Réserve volume capable stocké - volume V10 =		m3		m3		m3		m3
Réserve volume de stockage au dessus du NPHE 10 ans (*) =	23	m3	27	m3	78	m3	27	m3
Volume disponible résultant au bout de 48 h =		m3		m3	161			m3
Volume V10 ans 2ième épisode pluvieux au bout de 48 h =	38	m3	80	m3	129	m3	35	m3

Ainsi pour les Noues/tranchées de rétention et infiltration de l'avenue Kennedy, les temps de vidange sont supérieurs à 48 heures pour la pluie décennale (6 jours en approche 1, 4 jours moyen en approche 2):

- En cas d'un second épisode pluvieux décennal en moins de 48 heures, les noues/tranchées de rétention/infiltration se mettent en charge jusqu'à atteindre la réserve de capacité de stockage dont elles disposent (V20 ans) puis débordent sur le domaine public,
- En cas d'un second épisode pluvieux décennal au bout 48 heures, le volume vidangé en 48 heures cumulé avec la réserve de capacité de stockage dont disposent les noues/tranchées de rétention/infiltration permettent a priori de stocker un second épisode pluvieux décennal. Cette approche sera affinée en phase PRO à l'appui des études de nivellement détaillé et des compléments de mesure de perméabilité des sols.

Une vidange des rétentions en 48 heures nécessiterait :

- un débit de vidange plus important et donc de déroger au débit de fuite admissible de 1l/s/ha,
- une surface d'infiltration plus importante puisque le débit de vidange est plus important pour une capacité d'infiltration égale par ailleurs à 10⁻⁶m³/m²/s.

NOTE ASSAINISSEMENT NOTE TECHNIQUE

Temps de vidange des bassins sous DN2000 sous voirie :

Les temps de vidange des bassins DN2000 sont de 5 à 6 jours.

Les résultats sont comparables à ceux des noues/tranchées de rétention.

En cas d'un second épisode pluvieux décennal en moins de 48 heures :

- les bassins enterrés DN2000 se mettent en charge et débordent sur domaine public (ces bassins sont dimensionnés pour une pluie de période de retour 10 ans hors agglomération, sans réserve de capacité supplémentaire; rappel fait que le débit de fuite des bassins enterré est repris en infiltration par approfondissement des tranchées de rétention/infiltration dans le cadre de l'AVP, et ce à défaut de tout autre exutoire).
- le volume de débordement sur la voirie publique serait susceptible de générer :
 - une lame d'eau de l'ordre de 10 cm environ sur la chaussée large de 4,75 m et sur 1000 ml pour un volume V10 ans cumulé des bassins sous voirie d'environ 470 m³,
 - une lame d'eau de l'ordre de 10 cm environ sur l'accotement sud penté côté noue en lisière de forêt pour un volume V10 ans cumulé des noues d'environ 280 m³ (500 ml d'espace noue (2m) + trottoir sud (3m) d'une largeur cumulée de 5 m). Ces estimations seront affinées en phase PRO en fonction de l'étude détaillée du nivellement.

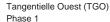
En cas d'un second épisode pluvieux décennal entre 48 heures et 5 à 6 jours :

- le volume vidangé en 48 heures n'est pas suffisant puisqu'il n'y a pas de réserve de capacité de stockage par ailleurs (les noues/tranchées de rétention/infiltration sont déjà sollicitées pour stocker un second épisode pluvieux décennal à partir de 48 heures comme précisé plus haut). En conséquence, les bassins sous voirie débordent sur le domaine public de l'avenue Kennedy,
- le volume de débordement sur la voirie publique serait susceptible de générer une lame d'eau inférieure à 10 cm; cette lame d'eau est moindre à mesure que le second épisode pluvieux 10 ans se rapproche du temps de vidange des bassins.

Au-delà de 5 à 6 jours, les bassins ont retrouvé leur capacité de stockage initiale V10 ans.

Il convient de rappeler que la situation projetée améliore l'état existant puisque aujourd'hui les 200 premiers ml et 300 derniers ml de l'avenue Kennedy ruissellent directement vers la lisière forestière sud pour toutes les pluies. En outre, les surfaces acquises par le projet en lisière de forêt sont elles-mêmes comptabilisées dans le bilan des rétentions à défaut d'exutoire autre que l'infiltration.

En cas de second épisode pluvieux décennal en moins de 48 heures, une surverse vers la lisière sud n'aggraverait donc pas la situation existante.


eau des temps de vidange des bassins sous voirie – Avenue Kenn

		BR01	BK02	BRU3	BK04	BK05 et BK06	lond.
Stockage par DN 2000 enterrée pour les eaux de voirie :	les eaux de voirie :	BR nºl Voirie 1	BR n2 Voirie 2	BR n3 Plateforme	BR n ^o 4 Plateforme	BR n5 et 6 Voirie 3	BR n7 Voirie 4
	Linéaire DN 2000 =	13 ml	26 ml	25 ml	50 ml	41 ml	10 ml
	Pente =	0,005 m/m	0,005 m/m	0,005 m/m	0,005 m/m	0,005 m/m	0,005 m/m
Volume stocké à p	Volume stocké à pleine section avale =	39 m3	78 m3	75 m3	150 m3	123 m3	30 m3
Volc	Volume V10 à stocker =	38 m3	77 m3	106 m3	102 m3	118 m3	32 m3
				sous-total	sous-total BR03+BR04	réparti au prorata en deux sous-bassins	sous-bassins
			Volume stock	Volume stocké à pleine section avale =	225 m3	27 ml	
				Volume à stocker =	209 m3 Ok	14 ml	
Analyse complémentaire temps de vidange (réunion DDT du 21/07/15)	on DDT du 21/07/15)						
Approche débit de fuite calculé sur la base de la surface active du BV	ace active du BV						
Surface active reprise	Surface active reprise par bassin enterré =	0,08 ha	0,16 ha	0,22 ha	0,21 ha	0,24 ha	0,07 ha
Débit de	Débit de fuite réglementaire =	1 I/s/ha	1 I/s/ha	1 I/s/ha	1 I/s/ha	1 l/s/ha	1 l/s/ha
Débit d	Débit de fuite résultant Qf =	8/1 80'0	0,16 1/s	0,22 1/s	0,21 1/s	0,24 l/s	0,07 1/s
	Volume à vidanger =	38 m3	77 m3	106 m3	102 m3	118 m3	32 m3
temps de	temps de vidange estimé =	6 jours	6 jours	6 jours	6 jours	6 jours	6 jours
Volume vidangé estimé au bout de 48 heures = Temps vidange x Qf =	emps vidange x Qf =	13 m3	27 m3	73	m3	41 m3	11 m3
Réserve volume capable stock é - volume V10 =	cké - volume V10 =	1 m3	1 m3	16	m3	5 m3	-2 m3
Réserve volume de stockage au dessus du NPHE 10 ans (*) =	tu NPHE 10 ans (*) =	0 m3	0 m3	0	m3	0 m3	0 m3
Volume disponible résultant au bout de 48 h =	nt au bout de 48 h =	14 m3	28 m3	06	m3	46 m3	9 m3
Volume V10 ans 2 ième épisode pluvieux au bout de 48 h =	x au bout de 48 h =	38 m3	77 m3	509	m3	118 m3	32 m3
Approche débit de fuite calculé sur la base de la surface du BV	ace du BV						
Surface Bas	Surface Bassin Versant repris =	0,08 ha	0,16 ha	0,24 ha	0,23 ha	0,25 ha	0,07 ha
Débit de	Débit de fuite réglementaire =	1 I/s/ha	1 I/s/ha	1 I/s/ha	1 I/s/ha	1 l/s/ha	1 l/s/ha
Débit de fuite résultant Of en raisonnant à l'ha du BV =	onnant à l'ha du BV =	8/1 80'0	0,16 I/s	0,24 l/s	0,23 l/s	0,25 l/s	0,07 1/s
	Volume à vidanger =	38 m3	77 m3	106 m3	102 m3	118 m3	32 m3
de mps de	temps de vidange estimé =	5 jours	5 jours	5 jours	5 jours	5 jours	5 jours
Volume vidangé estimé au bout de 48 heures = Temps vidange x Qf =	Femps vidange x Qf =	14 m3	28 m3	81	m3	44 m3	12 m3
Réserve volume capable stock é - volume V10 =	cké - volume V10 =	1 m3	1 m3	-	m3	5 m3	-2 m3
Réserve volume de stockage au dessus du NPHE 10 ans (*) =	In NPHE 10 ans (*) =	0 m3	0 m3	0	m3	0 m3	0 m3
Volume disponible résultant au bout de 48 h =	nt au bout de 48 h =	15 m3	30 m3	82	m3	48 m3	10 m3
7.00	101 11	0		:			

43/127

NOTE ASSAINISSEMENT NOTE TECHNIQUE

1.4.3.1.3 Temps de vidange en rive de l'avenue des Loges RD284

Les principes et les conclusions sont les mêmes que pour les noues/tranchées de rétention et infiltration de l'avenue Kennedy. Sur l'avenue des Loges, le raisonnement a été mené sur des noues/tranchées par canton de 100 ml :

Analyse complémentaire temps de vidange (réunion DDT du 21/07/15) Approche débit de fuite calculé sur la base de la surface active du BV		
Surface active reprise par tranchée de 100 ml =	0,08	ha
Débit de fuite réglementaire =	1	l/s/ha
Débit de fuite résultant Qf =	0,08	l/s
Volume V10 à vidanger =	40	m3
temps de vidange estimé V10 =	6	jours
Volume V20 à vidanger =	51	m3
temps de vidange estimé V20 =	7	jours
Volume vidangé estimé au bout de 48 heures = Temps vidange x Qf =		m3
Réserve volume capable stocké - volume V10 =		m3
Réserve volume de stockage au dessus du NPHE 10 ans (*) =		m3
Volume disponible résultant au bout de 48 h =		m3
Volume V10 ans 2ième épisode pluvieux au bout de 48 h =	41	m3
Approche débit de fuite calculé sur la base de la surface du BV		
Surface Bassin versant =	0,18	
Débit de fuite réglementaire =		l/s/ha
Débit de fuite résultant Qf en raisonnant à l'ha du BV =	0,18	
Volume V10 à vidanger =		m3
temps de vidange estimé V10 =		jours
Volume V20 à vidanger =	٠.	m3
temps de vidange estimé V20 =	3	jours
Volume vidangé estimé au bout de 48 heures = Temps vidange x Qf =	31	m3
Réserve volume capable stocké - volume V10 =	1	m3
Réserve volume de stockage au dessus du NPHE 10 ans (*) =	30	m3
	62	m3
Volume disponible résultant au bout de 48 h =	02	1110

Ainsi pour les Noues/tranchées de rétention et infiltration de l'avenue des Loges, les temps de vidange sont supérieurs à 48 heures **pour la pluie décennale (6 jours en approche 1 ; 3 jours en approche 2)** :

- En cas d'un second épisode pluvieux décennal en moins de 48 heures, les noues/tranchées de rétention/infiltration se mettent en charge jusqu'à atteindre la réserve de capacité de stockage dont elles disposent (V20 ans) puis débordent sur le domaine public (contre-allée est de la RD284),
- En cas d'un second épisode pluvieux décennal au bout 48 heures, le volume vidangé en 48 heures cumulé avec la réserve de capacité de stockage dont disposent les noues/tranchées de rétention/infiltration permettent a priori de stocker un second épisode pluvieux décennal. Cette approche sera affinée en phase PRO à l'appui des études de nivellement détaillé et des compléments de mesure de perméabilité des sols.

44/127

Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

45/127

Une vidange des rétentions en 48 heures nécessiterait :

- un débit de vidange plus important et donc de déroger au débit de fuite admissible de 1l/s/ha,
- une surface d'infiltration plus importante puisque le débit de vidange est plus important pour une capacité d'infiltration égale par ailleurs à 10⁻⁶m³/m²/s.

Dans le cadre des compléments G2 PRO, une mesure de perméabilité dans des couches plus profondes sera effectuée pour voir si celles-ci sont susceptibles d'être plus perméables et donc de nécessité un peu moins de surface d'infiltration pour un même débit à infiltrer (1 point de mesure par noue au droit du point-bas de la noue).

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

1.4.4 Limites d'exploitation proposées

Les limites d'intervention pour l'entretien des réseaux d'assainissement devront être fixées dans le cadre de conventions à établir entre le Maître d'Ouvrage du Projet et les exploitants pressentis. A l'issue de la réunion technique du 18/02/15 en présence de la Ville de Saint-Germain-en-Laye, du Département des Yvelines, de KEOLIS AMO pour SNCF Transilien et de GTGO, les principes suivants ont été proposés en séance (également présentés à la DIRIF le 06/03/15) mais ne sont pas définitivement tranchés :

1.4.4.1 Séquence Lisière Pereire / Avenue Kennedy

- Entretien DIRIF: RN184 y compris accotement Est en rive de la RN (accotement et assainissement de la voirie)
- Entretien futur Exploitant du Système de Transport : assainissement de la plateforme implantée sous la voie verte et mutualisé avec la collecte des eaux pluviales de la voie verte
- Entretien du fossé en pied de voie verte y compris clôture en lisière forestière; la Ville de Saint-Germain-en-Laye ne souhaite pas récupérer l'entretien de cette voie verte hors agglomération.

1.4.4.2 Séquence Avenue Kennedy

Entre le carrefour Avenue RN184/Avenue Kennedy et l'entrée du Camp des Loges (environ 200 ml) :

- Entretien Ville de Saint-Germain-en-Laye: assainissement de la voirie (dont en théorie bassins enterrés DN2000 BR01 et BR02 recueillant les eaux de ruissellement de voirie)
- Entretien futur Exploitant Système Tram-Train : assainissement de la plateforme,
- Entretien noue/tranchée sud proposé au prorata des surfaces drainées entre futur Exploitant Système et Ville de Saint-Germain-en-Laye. Cette noue/tranchée collecte/stocke et infiltre les eaux de ruissellement de la plateforme et du trottoir sud selon un débit de fuite de 1 l/s/ha pluie 10 ans (SDAGE). Cette noue reprend également le débit de fuite des deux bassins DN2000 sous voirie (BR01 et BR02).

Lors de la réunion du 18/02/15, la Ville de Saint-Germain-en-Laye a rappelé qu'aujourd'hui ses eaux de voiries ruisselaient naturellement vers l'accotement forestier sud ; l'insertion de la plateforme ajoute donc une contrainte assainissement supplémentaire côté Ville en termes d'exploitation.

GTGO a rappelé que dans le cadre du présent AVP, il est proposé de collecter distinctement les eaux de voirie nord des eaux de plateforme tram-train + trottoir sud. Le projet conduit donc à une mise à niveau de l'avenue Kennedy pour la partie voirie ; la prescription SDAGE d'un débit de fuite admissible de 1l/s/ha actif a été prise en compte pour ces eaux de voirie (de même que pour les eaux de plateforme) avant rejet vers le milieu naturel hors agglomération. Cette prescription conduit à proposer pour la voirie des rétentions enterrées sous chaussée compte tenu des contraintes d'emprises par ailleurs,

Concernant les fréquences d'entretien d'un bassin de rétention, la Ville pratique usuellement un curage 1 fois/an.

47/127

Entre l'entrée du Camp des Loges et le restaurant Cazaudehore (environ 500 ml) :

- Entretien Ville de Saint-Germain-en-Laye: assainissement de la voirie (DN 300 unitaire déplacé dans le cadre des travaux de dévoiement / DUP et implanté sous la bande cyclable),
- Entretien futur Exploitant Système Tram-Train :
 - o assainissement de la plateforme,
 - o bassins de rétention DN2000 sous trottoir sud (DN2000 BR03 et BR04) nécessaires pour reprendre les eaux de ruissellement générées par la plateforme (élargissement de l'assiette générale) et qui ne peuvent être reprises directement par le DN300 unitaire Ville; En outre ce réseau est à faible profondeur; en conséquence le débit régulé en sortie de bassin sera relevé à 11/s/ha vers le réseau unitaire Ville.
 - 100 % de la station Camp des Loges ; la limite d'exploitation côté sud sera le fil d'eau entre le quai et le trottoir.

Entre le restaurant Cazaudehore et le carrefour Kennedy / RD284 (environ 300 ml) :

- Entretien Ville de Saint-Germain-en-Laye: assainissement de la voirie (dont en théorie bassins enterrés DN2000 BR05, BR06, BR07) recueillant les eaux de ruissellement de voirie),
- Entretien futur Exploitant Système Tram-Train : assainissement de la plateforme,
- Entretien noue/tranchée sud proposé au prorata des surfaces drainées entre futur Exploitant Système et Ville de Saint-Germain-en-Laye. Cette noue/tranchée collecte/stocke et infiltre les eaux de ruissellement de la plateforme et du trottoir sud selon un débit de fuite de 1 l/s/ha pluie 10 ans (SDAGE). Cette noue reprend également le débit de fuite des bassins DN2000 sous voirie (BR05, BR06 et BR07).

1.4.4.3 Séquence Avenue des Loges - RD284

Du carrefour Kennedy/RD284 au carrefour RD284/RD157:

- Entretien à la charge du Département des Yvelines :
 - Fossé Est de la RD284.
 - Dép.78 souhaite éviter une tranchée de rétention/infiltration sous le fossé Est recalibré dans le cadre du projet. MOE GTGO a examiné la possibilité de rester dans l'épure de la largeur du fossé actuel à faible profondeur, la trame d'alignement replantée pouvant être intégrée à la rive du fossé.
 - Limite d'entretien Dép.78 = limite extérieure du fossé Est.
- Entretien à la charge du futur Exploitant Tram-Train :

Tangentielle Ouest (TGO)
Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

- Assainissement de la plateforme,
- Noue/tranchée de rétention et infiltration des eaux de ruissellement de la plateforme.

Du carrefour RD284/RD157 au terminus :

- Entretien à la charge du futur Exploitant Tram-Train :
 - Assainissement de la plateforme,
 - o Noue/tranchée de rétention et infiltration des eaux de ruissellement de la plateforme,
 - Assainissement EP/EU du terminus Saint-Germain-en-Laye / RER A (sujet convention de rejet à préciser en phase PRO en interface avec la RATP).

2. RETENTIONS COMPENSATOIRES PAR SEQUENCE DU PROJET

2.1 OBJECTIFS ET PRINCIPES GENERAUX

Trois objectifs principaux ont prévalu dans le cadre du présent projet d'assainissement :

- 1) Améliorer la situation actuelle, lorsque les eaux de ruissellement de voirie s'écoulent directement vers la lisière de forêt (cas de 50 % de l'avenue Kennedy). En effet, aujourd'hui les eaux de ruissellement de voirie au niveau de l'entrée de l'avenue Kennedy sur 200 ml puis en sortie de l'avenue Kennedy sur 300 ml ruissellent directement vers l'accotement sud de l'avenue côté lisière forestière et s'infiltrent dans le sol. Dans le cadre du présent AVP, il est proposé de collecter distinctement les eaux de voirie nord des eaux de plateforme tram-train + trottoir sud. De fait, la prescription SAGE d'un débit de fuite admissible de 1l/s/ha actif a été prise en compte pour ces eaux de voirie (de même que pour les eaux de plateforme) avant rejet vers le milieu naturel hors agglomération. Cette prescription conduit à proposer pour la voirie des rétentions enterrées sous chaussée compte tenu des contraintes d'emprises par ailleurs. Le coût associé à cette amélioration du fonctionnement actuel de l'assainissement de la voirie publique a été identifié séparément, les eaux de ruissellement de la plateforme TGO étant collectées/stockés/infiltrées par ailleurs.
- 2) Proposer une rétention compensatoire au droit des espaces faiblement imperméabilisés existants en lisière de forêt et qui se retrouveraient sous de futures emprises imperméabilisées par le projet TGO (c'est le cas sur une bonne partie du périmètre de Saint-Germain-en-Laye ou le tracé de la plateforme s'insère en lisière de forêt et sur l'ensemble du tracé de la Virgule Saint-Cyr situé sur la partie boisée et le champ actuellement exploité par l'INRA),
- 3) Réduire le niveau d'imperméabilisation lorsque cela est envisageable :
- Au droit de la plateforme proprement dite: proposition de végétalisation sur longrines dans les secteurs du projet où le tracé de la plateforme le permet. Une structure classique végétalisée sur fondation béton participe déjà dans une moindre mesure au ralentissement des écoulements,
- Par le choix de matériaux de revêtement a coefficient de ruissellement moins élevé que les revêtements usuels : cheminement en stabilisé renforcé, plantation des sur-largeurs GLO dès que cela est possible...

2.1.1 Périmètre Saint-Germain-en-Laye (SP1)

Les emprises soumises à une imperméabilisation supplémentaires sont principalement les suivantes :

Séquence RN184 :

- o Emprise plateforme entre la sortie du RFN et la traversée de la RN184
- o Emprise plateforme en rive Est de la RN184 entre le carrefour projeté Lisière Pereire/RN184/TGO et le carrefour RN184/RD190 : lisière de forêt sur 100 ml environ
- Emprise plateforme et voie verte 4 m en rive Est de la RN184 entre le carrefour RN184/RD190 et l'entrée de l'avenue Kennedy : lisière de forêt sur 250 ml environ

Séquence Kennedy :

- Emprise plateforme + trottoir en rive sud de l'Avenue Kennedy jusqu'à l'entrée principal du Camp militaire des Loges : lisière de forêt sur 200 ml environ
- Emprise plateforme + trottoir en rive sud de l'Avenue Kennedy en aval de la future station
 Camp des Loges et jusqu'au carrefour avec la RD284 : lisière de forêt sur 300 ml environ

Au niveau de la séquence plus minérale le long du Complexe sportif, le niveau d'imperméabilisation est sensiblement équivalent à l'existant déjà fortement imperméabilisé (chaussée et trottoirs en enrobés). Toutefois, le projet prévoit la réalisation d'une rétention pour la plateforme pour :

- o D'une part intégrer la sur-largeur induite par le projet en rive nord sur le Camp des Loges,
- D'autre part dissocier la collecte des eaux pluviales de la plateforme des eaux de voirie.
 En effet, le collecteur unitaire DN300 existant ou dévié à terme paraît sous-dimensionné pour reprendre le bassin versant de la plateforme sur cette séquence du projet.

• Séquence RD284 :

 Sur cette séquence, l'ensemble de la plateforme s'insère sur une emprise faiblement imperméabilisée en lisière de forêt.

Sur le périmètre de Saint-Germain-en-Laye, l'absence quasi-totale d'exutoire, ne permet pas de raisonner simplement en volume généré induit par l'imperméabilisation supplémentaire liée à la plateforme. En effet, cela supposerait :

- De pouvoir stocker ce volume supplémentaire d'une part,
- Et de pouvoir surverser sans rétention le volume lié au niveau d'imperméabilisation de l'état existant forestier d'autre part.

Or, ceci n'est pas possible en l'état puisqu'il n'y a pas d'exutoire, à l'exception de l'infiltration. Aussi l'ensemble du bassin versant de la plateforme et de l'aménagement qui l'accompagne (sur-largeur, trottoir/voie de maintenance) est considéré pour le calcul des rétentions.

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT

2.1.2 Périmètre Virgule Saint-Cyr (SP2)

Sur ce périmètre, le tracé de la Virgule s'insère au démarrage sur l'espace boisé situé en contrebas du faisceau du RFN puis en décaissé au niveau du champ actuellement exploité par l'INRA. Le projet se doit donc de compenser l'imperméabilisation induite par le projet. En outre, les contraintes de tracé en courbe et d'exploitation nécessite finalement une pose principalement sur béton. Dans le cadre de l'AVP V0, il a été considéré un coefficient de ruissellement de 0,85 sur l'assiette de la Virgule (coefficient type ballast MOE RFF relativement élevé mais qui reste sensiblement proche d'une plateforme minérale).

Dans le cas présent, le projet dispose d'un exutoire au niveau de la GCO qui permettrait d'y raccorder a minima et via une chambre de relevage le débit régulé du bassin de rétention des eaux pluviales de la Virgule Saint-Cyr (débit résultant estimé de l'ordre de 0,5 l/s avec pompe de relevage). Aussi, il a été considéré dans le cas présent une rétention des volumes générés uniquement par l'imperméabilisation supplémentaire induite en comparaison du niveau d'imperméabilisation de l'existant.

2.2 DIMENSIONNEMENT AVP PAR PERIMETRE ET DESCRIPTIF PAR SEQUENCE

2.2.1 Périmètre Saint-Germain-en-Laye (SP1)

Les plans assainissement remis dans le cadre de l'AVP permettent de distinguer par séquence du projet (périmètre des sous-bassins et surfaces associées en fonction de la localisation des points hauts et points bas du tracé) :

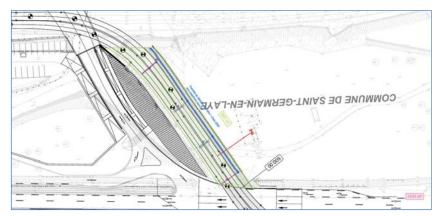
- les bassins versants spécifiques à la plateforme + surlargeur GLO + trottoir ou voie de maintenance en rive de GLO compte tenu de a configuration en latéral du tracé,
- les bassins versants routiers voirie/trottoir/accotement de la RN184 et de l'avenue Kennedy.

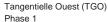
Concernant les bassins versants naturels forestiers en rive Est de la RN184, de l'avenue Kennedy et de la RD284, ceux-ci ne sont pas globalement interceptés par le projet (les écoulements généraux cf. carte IGN ne convergent pas vers le tracé).

2.2.1.1 Séquence RN184

En sortie du RFN:

49/127

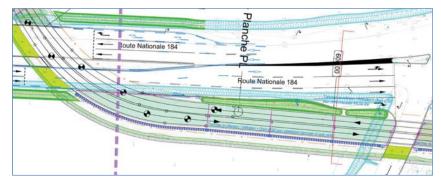

En sortie du RFN, la plateforme est en végétalisation classique sur béton. Une tranchée de rétention/infiltration est aménagée en rive nord de la plateforme. Cette tranchée sera accessible en maintenance via une sur-largeur d'exploitation utilisée également pour la multitubulaire.


51/127

Extrait plan TGO1_C5081_AVP_ARTE_PLA_ASS_D_113_58143_A01

Caractéristiques principales :

		Plate	forme	
Stockage par tranchée de re	étention :			
Hauteur utile NPHE 10 ans sous exutoire drain pla	ateforme =	2	m	
Larg	eur utile =	1	m	
Longu	eur utile =	70	m	
	porosité =	0,3		
pente longi	itudinale =	0,005	m/m	
Volume	stocké =	39	m3	
Volume à	stocker =	35	m3	
Réserve volume de stockage au dessus du NPHE 10) ans (*) =	21	m3	
Volume supplémentaire à stocker T20 (0,2	25xV10) =	9	m3	
Volume supplémentaire à stocker T50 (0),6xV10) =	21	m3	
(*) sur la base de 0,3m3/ml				
Vérification du débit de fuite de la tranchée de re	étention :			
	vitesse =	0,000001	m3/m2/s	
Surface d'infiltration nécessaire calé	ée sur qf =	71	m2	
Surface des parois non étanchées à - 1,5 m sous le	e TN Sp =	280	m2	
Surface de la l	base Sb =	70	m2	
Test Surface efficace à 1/3	(Sp+Sb) =	117	m2	
Test Surface efficace à	1/3(Sp) =	93	m2	Ok



NOTE ASSAINISSEMENT NOTE TECHNIQUE

Entre le carrefour RN184/Lisière Pereire et la RD190 :

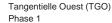
Après la traversée du carrefour avec la RN184, le projet longe la RN184 en rive Est :

Extrait plan TGO1 C5081 AVP ARTE PLA ASS D 113 58143 C

Le projet prévoit :

- La mise en œuvre de regards avaloirs pour la collecte du demi-bassin versant de la RN184, l'ensemble étant raccordé à un fossé latéral de rétention/infiltration réalisé dans la sur-largeur résultante entre l'accotement de la RDN184 et la plateforme; ce dispositif vient remplacer le fossé latéral existant supprimé pour l'insertion d'une 3^{ième} file de circulation et d'une sur-largeur de tourne-à-droite.
- La mise en œuvre d'une tranchée de rétention infiltration en rive est de la plateforme. Cette tranchée
 de rétention/infiltration reprendra également la voie verte intégrée en AVP Vf dans le cadre de la
 recherche d'une continuité cycles jusqu'au carrefour RN184/Lisière Pereire, selon le même principe
 que la section comprise entre la RD190 et l'avenue Kennedy.

Caractéristiques principales de la tranchée de rétention/infiltration pour la plateforme et la voie verte ainsi que pour le bassin versant Est de la RN184 :



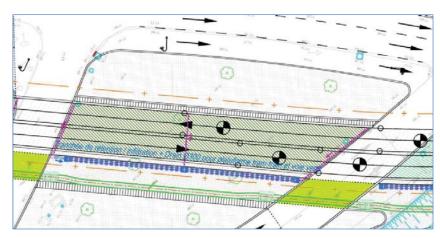
	Plat.+vo	oie verte	BV R	N184	
Stockage par tranchée de rétention :					
Hauteur utile NPHE 10 ans sous exutoire drain plateforme ou BA chaussée =	2	m	2	m	
Largeur utile =	1	m	1	m	
Longueur utile =	120	m	120	m	
porosité =	0,3		0,3		
pente longitudinale =	0,005	m/m	0,005	m/m	
Volume stocké =	62	m3	62	m3	
Volume à stocker =	59	m3	50	m3	
Réserve volume de stockage au dessus du NPHE 10 ans (*) =	36	m3	36	m3	
Volume supplémentaire à stocker T20 (0,25xV10) =	15	m3	13	m3	
Volume supplémentaire à stocker T50 (0,6xV10) =	35	m3	30	m3	
Vérification du débit de fuite de la tranchée de rétention :					_
vitesse =	0,000001	m3/m2/s	0,000001	m3/m2/s	
Surface d'infiltration nécessaire calée sur qf =	137	m2	102	m2	
Surface des parois non étanchées à - 1,5 m sous le TN Sp =	480	m2	480	m2	
Surface de la base Sb =	120	m2	120	m2	
Test Surface efficace à 1/3(Sp+Sb) =	200	m2	200	m2	
Test Surface efficace à 1/3(Sp) =	160	m2	160	m2	Ok

Adaptations de la solution de base en phase AVP V1 (complété en Vf suite à la mise à jour du plan d'insertion urbaine avec la voie verte entre Lisière Pereire et RD190) :

A l'issue de l'étude AVP V0, la DIRIF a fait un premier retour sur la collecte des eaux pluviales en rive de la RN184. La DIRIF souhaite privilégier lorsque cela est possible une infiltration en aérien de ces eaux de ruissellement plutôt qu'une infiltration par tranchée drainante pour des questions d'entretien et d'exploitation. Sur les 100 ml situés entre la traversée de la plateforme Lisière Pereire et le carrefour RN184/RD190, cette adaptation serait envisageable. En effet, le projet prévoyait déjà la mise en œuvre d'un collecteur sous accotement en rive de chaussée raccordé en un fossé/bassin d'infiltration de 90 m² de surface environ.

- Surface du bassin versant RN184 susceptible d'être repris en rive Est de la RN184 :
 - 1 050 m² de chaussée à 0,95
 - o Soit une surface active d'environ 0,1 ha
- Volume 10 ans généré pour un débit de fuite de 1l/s/ha :
 - V10 ans ≈ 50 m³
 - Q fuite SAGE ≈ 1l/s/ha x 0,1 ≈ 0,1 l/s
- Capacité théorique de stockage du fossé/bassin :
 - 1 m³/ml sur environ 60 ml soit 58 m³ (sur la base d'une largeur moyenne de fossé de 2,40 m et d'une profondeur moyenne de 0,8 m environ avec des pentes latérales de fossé à 3H/2V),
 - o débordement au-delà de la pluie 10 ans.
- Débit de fuite du fossé issu des données de sol :
 - o on considère la surface d'infiltration correspondant au remplissage maximal du fossé; on prend ici la surface miroir soit 145 m2 prise égale à la projection horizontale de la surface réelle d'infiltration afin de tenir compte d'un coefficient de sécurité,
 - le coefficient de perméabilité K étant évalué à 10⁻⁶m³/m²/s, le débit de fuite du fossé serait donc : Q = K x S miroir = 10-6 m3/m2/s x 145 m2 ≈ 0,14 l/s sensiblement équivalent au débit de fuite du SAGE à 0.10 l/s.

NOTE ASSAINISSEMENT NOTE TECHNIQUE



Test option fossé latéral RN184 (entre Lisière Pereire et RD190) :		
Surface miroir =		m2
Profondeur =	0,8	
Linéaire du fossé =	60	ml
Largeur moyenne du fossé =	2,4	m
volume stocké /ml =	1,0	m3/ml
volume stocké =	58	m3
Volume à stocker =	50	m3
Débit d'infiltration calé sur la surface miroir =	0,145	l/s
Débit de fuite qf (1l/s/ha actif) =	0,10	l/s

En conséquence le fossé/bassin d'infiltration projeté pourrait infiltrer directement en surface le bassin versant constitué localement par la demi-chaussée Est de la RN184, dans des conditions d'entretien et d'exploitation sensiblement équivalente à un fossé existant, sans toutefois de capacité de stockage supplémentaire au-delà de la pluie de période de retour 10 ans.

Au niveau de la traversée de la RD190 :

 Le projet prévoit la mise en œuvre d'une tranchée de rétention/infiltration en rive Est de la plateforme au droit de l'actuel îlot planté; cette tranchée reprendra également les eaux de ruissellement de la voie verte intégrée en AVP Vf:

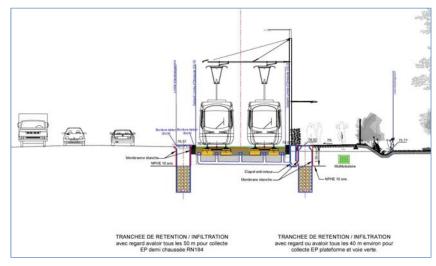
Extrait plan TGO1_C5081_AVP_ARTE_PLA_ASS_D_114_58144_C

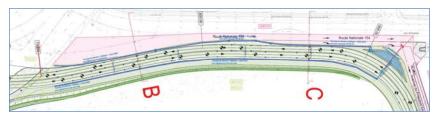
55/127

Caractéristiques principales (mise à jour en Vf avec l'intégration de la voie verte) :

	Plat.+vo	oie verte	
Stockage par tranchée de rétention :			
Hauteur utile NPHE 10 ans sous exutoire drain plateforme =	2	m	
Largeur utile =	1	m	
Longueur utile =	45	m	
porosité =	0,3		
pente longitudinale =	0,005	m/m	
Volume stocké =	26	m3	
Volume à stocker =	21	m3	
Réserve volume de stockage au dessus du NPHE 10 ans (*) =	14	m3	
Volume supplémentaire à stocker T20 (0,25xV10) =	5	m3	
Volume supplémentaire à stocker T50 (0,6xV10) =	13	m3	
(*) sur la base de 0,3m3/mI			
Vérification du débit de fuite de la tranchée de rétention :			
vitesse =	0,000001	m3/m2/s	
Surface d'infiltration nécessaire calée sur qf =	49	m2	
Surface des parois non étanchées à - 1,5 m sous le TN Sp =	180	m2	
Surface de la base Sb =	45	m2	
Test Surface efficace à 1/3(Sp+Sb) =	75	m2	
Test Surface efficace à 1/3(Sp) =	60	m2	Ok

Tangentielle Ouest (TGO) Phase 1

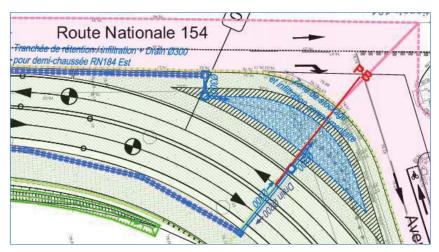

NOTE ASSAINISSEMENT NOTE TECHNIQUE


Entre le carrefour RN184/RD190 et l'avenue Kennedy :

A - Solution de base proposée en phase AVP V0

La coupe ci-dessous illustre le principe d'assainissement envisagé :

- Mise en place d'une tranchée de rétention/infiltration sous accotement en rive de la RN184 avec bouches avaloir tous les 50 ml environ connectées à la tranchée. Celle-ci reprend les eaux pluviales de la demi-chaussée de la RN184 sur ce linéaire du projet,
- Côté voie verte, mise en place d'une tranchée de rétention/infiltration reprenant les eaux pluviales de la plateforme et de la voie verte,
- Compte tenu du volume à stocker et du faible débit d'infiltration, un complément de stockage/infiltration est proposé dans l'emprise située à l'angle RN184/Avenue Kennedy,



Extrait plan TGO1_C5081_AVP_ARTE_PLA_ASS_D_114_58144_B

57/127

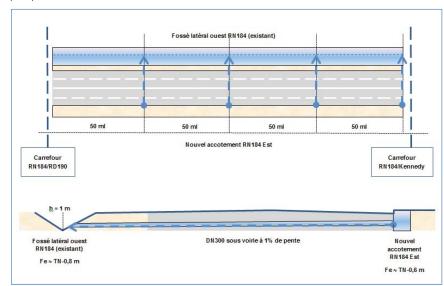
Zoom sur zone de stockage/infiltration complémentaire à l'exutoire RN184/Voie Verte

Caractéristiques principales :

		Plat.+vo	ie verte	BV R	N184						
Stockage par tranchée de rét	ention :										
Hauteur utile NPHE 10 ans sous exutoire drain plateforme ou BA cha		2	m	2	m						
	ur utile =	1	m	1	m						
Longueu	ur utile =	200	m	200	m						
	prosité =	0.3		0.3							
pente longitu		0.005	m/m	0.005							
Volume s		90	m3	90	m3	180	m3				
Volume à s	tocker =	149	m3	113	m3	262	m3				
Réserve volume de stockage au dessus du NPHE 10 a	ans (*) =	60	m3	60	m3	120	m3				
Volume supplémentaire à stocker T20 (0.25		37	m3	28	m3	65	m3				
Volume supplémentaire à stocker T50 (0,6	8xV10) =	89	m3	68	m3	157	m3				
(*) sur la base de 0,3m3/ml											
Vérification du débit de fuite de la tranchée de rét	ention:										
l v	itesse =	0,000001	m3/m2/s	0,000001	m3/m2/s						
Surface d'infiltration nécessaire calée	sur qf =	302	m2	192	m2	493	m2				
Surface des parois non étanchées à - 1,5 m sous le	TN Sp =	800	m2	800	m2						
Surface de la ba	se Sb =	200	m2	200	m2						
Test Surface efficace à 1/3(S	p+Sb) =	333	m2	333	m2						
Test Surface efficace à 1	/3(Sp) =	267	m2	267	m2	533	m2				
	corresp	oond à la s	urface mire	oir du fossé e	xistant de l'or	dre de 500	m2				
uits d'infiltration complémentaire à l'exutoire (stockage et infilte	ration):	commun	Voie Ve	rte et Accote	ment RN184						
Hauteur sous ex	xutoire =			3	m						
Périmètr	re utile =			70	m						
Surface pare	ois Sp =			210	m2						
Surface de la ba	se Sb =			120	m2						
Test Surface efficace à 1/3(S	p+Sb) =			110	m2						
Test Surface efficace à 1				70	m2			rface utile d'in		bale	
Volume stocké suppléme	entaire =			108	m3	288	m3 de vol	ume global de s	stockage		
Total Volume à s	tocker =					262	m3				
Volume s	stocké =					288	m3 Ok				
Réserve volume de stockage au dessus du NPHE 10 ans pu	uits (*) =					54	m3 sur la	base d'une sur	face de 120 m	2 sur 1,50 m	à n = 0,3
Réserve volume de stockage au dessus du NPHE 10 ans tranché						120	m3 au dro	it des tranchée	s Plateforme	voie verte et E	3V RN184
Total réserve vo						174					
Volume supplémentaire à stocker T20 (0,25							m3				
Volume supplémentaire à stocker T50 (0,6	SvV10) -					157	m3				

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE



B - Adaptations de la solution de base en phase AVP V1 :

A l'issue de l'étude AVP V0, la DIRIF a fait un premier retour sur la collecte des eaux pluviales en rive de la RN184. Le système proposé d'une tranchée de rétention/infiltration sous trottoir Est de la RN complique selon la DIRIF l'entretien courant et en cas de pollution accidentelle peut devenir très complexe. C'est pourquoi, la DIRIF a souhaité que soit examinée la mise en œuvre d'un réseau traditionnel étanche par canalisation pour collecter les eaux de surfaces avec des traversées de chaussée pour rejet dans le fossé existant opposé.

Alternative B-1 : raccordement sur le fossé latéral ouest de la RN184

Cette solution est assez contrainte en termes de mise en œuvre dans la mesure où le fossé latéral ouest de la RN184 a une profondeur de 1 m seulement. Dans cette configuration, il faudrait envisager la mise en œuvre d'une bouche avaloir tous les 50 ml raccordé en DN300 sur le fossé ouest de la RN184 selon le principe de fonctionnement ci-dessous :

Alternative raccordement fil d'eau Est RN184 sur fossé Ouest RN184

Compte tenu de la faible profondeur du fossé ouest, cette disposition ne permet pas de disposer d'une charge usuelle de 80 cm sur réseau en traversée de la chaussée de la RN184 tout en restant en gravitaire ; dans ce cas, des dispositions de type dalle de répartition sous chaussée devraient être envisagées.

SNC · LAVALIN

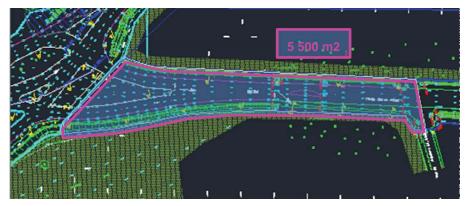
Alternative B-2 : reprofilage transversal de la RN184 orienté vers le fossé latéral ouest

Une autre alternative à cette solution consisterait à re-profiler la chaussée avec une pente transversale unique vers le fossé ouest. Cette alternative semble la mieux adaptée aux problèmes d'exploitation et d'entretien selon la DIRIF. Cette solution permet en effet de respecter le principe sain de séparation des eaux de chacun (eaux de voirie d'une part et eaux de plateforme et voie verte d'autre part). La condition préalable à cette alternative (comme à la précédente) est d'effectuer un calcul de la capacité du fossé ouest à reprendre les eaux de la chaussée après reprofilage. L'approche suivante est proposée :

- Surface du bassin versant susceptible d'être reprise par le fossé ouest (2x2 voies + accotements) : environ 5000 m² constitué de :
 - o 3 100 m² de chaussée à 0,95 (200 ml x 14 m de chaussée + sur-largeurs ponctuelles)
 - 160 ml x 3 m = 480 m² arrondi à 500 m2 de fossé ouest à 0.7
 - \circ 200 ml x 2 m = 400 m² de trottoir est à 0,7
 - o 500 m² de TPC engazonné existant à 0.7
 - o 200 ml x 3 m = 500 m² de bande dérasée ouest à 0.95

Soit une surface active Sa de l'ordre de : 3100 x 0.95 + 500 x 0.7 + 400 x 0.7 + 500 x 0.7 + 500 $\times 0.95 \approx 4.400 \text{ m}^2$

- Volume 10 ans généré par cette surface selon le ratio DRIEA de 450 m³/ha actif pour un débit de fuite de 1l/s/ha:
 - o V10 ans ≈ 0.44 ha x 450 m 3 /ha actif ≈ 200 m 3
 - Q fuite SAGE ≈ 1l/s/ha x 0.44 ≈ 0.5 l/s
- Capacité théorique de stockage du fossé : 1.5 m³/ml sur environ 160 ml soit 240 m³
- Débit de fuite du fossé issu des données de sol :
 - o on considère la surface d'infiltration correspondant au remplissage maximal du fossé ; on prend ici la surface miroir soit 3 m²/ml prise égale à la projection horizontale de la surface réelle d'infiltration afin de tenir compte d'un coefficient de sécurité (soit 160 ml x 3 m = 480
 - o le coefficient de perméabilité K étant évalué à 10⁻⁶m³/m²/s, le débit de fuite du fossé serait donc: Q = K x S miroir = 10^{-6} m³/m²/s x 480 m² = 0.00048 m³/s \approx 0.5 l/s


En conséquence le fossé existant pourrait infiltrer le bassin versant constitué localement par la RN184 en 2x2 voies pour une pluie 10 ans. On constate toutefois qu'au-delà de la pluie 10 ans, le fossé ouest déborderait sur la chaussée.

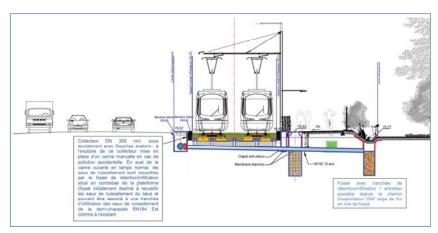
A noter par ailleurs que le bassin versant existant de la RN184 entre le carrefour RN184/RD190 et le carrefour RN184/Av. Kennedy repéré ci-dessous est actuellement d'environ 5 500 m² et qu'il est repris par un fossé de part et d'autre de la RN184, soit 2 750 m² par fossé. Cela conduit à penser que les fossés latéraux existants disposent d'une sécurité de stockage théorique au-delà de la pluie 10 ans de presque 50 %. Cette surcapacité ne pourrait pas être maintenue en l'état, sauf à élargir le fossé latéral ouest existant.

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

Extrait plan source DIRIF réf. RN184 TABLEAU ASSEMBLAGE DES BV

Alternative B-3:

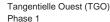

Une troisième proposition alternative à la solution de base est décrite ci-après :

- mise en œuvre d'un collecteur sous accotement Est avec bouches avaloirs pour le recueil des eaux de voirie de la demi-chaussée Est : ce collecteur serait dimensionné pour stocker l'équivalent de 30 m³ d'une pollution accidentelle d'un cuve de camion (soit un collecteur DN500),
- mise en œuvre d'une vanne manuelle de sécurité à l'exutoire de ce collecteur en cas de pollution accidentelle; en temps normal les eaux de ruissellement surversent au-delà de ces 30 m³ vers l'exutoire aval constitué par le fossé projeté en pied de plateforme tramway/voie verte le long de la RN184. Ce fossé reprenait initialement les eaux de ruissellement du petit talus en remblais de l'assiette plateforme « tram+voie verte», les eaux de la plateforme et de la voie verte étant quant à elles recueillies au niveau d'une tranchée de rétention/infiltration sous la voie verte compte tenu du risque de pollution aux hydrocarbures faible,
- ce fossé en pied de talus serait alors associé à une tranchée d'infiltration des eaux de ruissellement de voirie de la demi-chaussée Est de la RN184. Par ailleurs, ce fossé latéral en pied de talus serait accessible pour l'entretien via le chemin d'exploitation qui sera réalisé par l'ONF en rive du projet côté forêt (nécessité pour cela d'une convention entre l'ONF et le futur exploitant de ce fossé).

Proposition alternative B-3 pour la collecte des eaux pluviales de la RN184 Est

Cette troisième alternative pourrait constituer une solution par défaut pour la DIRIF, moins satisfaisante selon elle. La DIRIF attire par ailleurs l'attention sur la limite d'entretien et d'exploitation qu'elle fixerait dans ce cas au droit de la vanne via convention de rejet (retour DIRIF du 21/01/15). Toutefois cette solution ne réduit pas la réserve de capacité de stockage/infiltration du fossé latéral ouest existant qui continuera de reprendre simplement la demi-chaussée ouest de la RN184.

Ces solutions techniques seront développées en phase PRO.

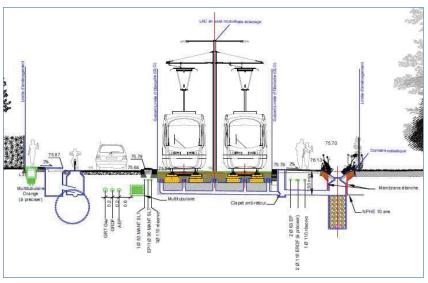

2.2.1.2 Séquence Avenue Kennedy

Cette séquence est décomposée en trois sous-séquences.

Carrefour RN184/av. Kennedy / entrée du Camp des Loges

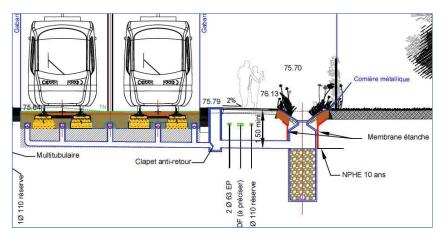
Sur cette sous-séquence de 200 ml environ, il est proposé :


- 1) Un réseau de collecte des eaux pluviales de la voirie DN300 mm min. (chaussée + trottoir nord) avec bassin de rétention enterré DN2000 pour amélioration de la situation actuelle (rejet direct des eaux pluviales vers la lisière forestière). En l'absence d'exutoire assainissement sur cette sousséquence, le débit de fuite du bassin de rétention est repris par la tranchée de stockage/infiltration située en rive sud; ceci nécessite un approfondissement de la tranchée pour intégrer la surface d'infiltration nécessaire à la reprise de ce débit de fuite.
- 2) Deux noues végétalisées de faible profondeur (50 cm) reprenant en direct les eaux de ruissellement du trottoir sud (deux points bas sur ces 200 ml). En sous-face de la noue, une tranchée de rétention/infiltration recueille en gravitaire les eaux de ruissellement de la plateforme végétalisée sur longrine. Le volume 10 ans de stockage de la tranchée est calé sous le niveau du point de


NOTE ASSAINISSEMENT NOTE TECHNIQUE

raccordement le plus bas de la plateforme (NPHE 10 ans). En cas de mise en charge au-delà d'une pluie 10 ans, la partie supérieure de la tranchée et la noue peuvent se mettre en charge; un clapet anti-retour évite de mettre en charge le réseaux des drains sous la plateforme; ce point sera développé en phase PRO en examinant une mise en charge parallèle noue/drains de plateforme vis-à-vis du Z structure/rails plateforme. Les raccordements de la plateforme vers la tranchée, tous les 40 ml environ, sont visitables via la mise en œuvre d'un regard à grille en fond de noue.

Extrait plan réf. TGO1_C5081_AVP_ARTE_PLA_ASS_D_001_58146_A01

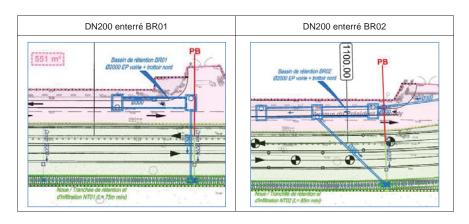

Extrait carnet de coupe de coordination réf.TGO1-C8000-AVP-ARTE-PLA-DEV-D-000-8001-A01

63/127

Zoom sur l'interface raccordement plateforme / noue-tranchée de stockage et infiltration

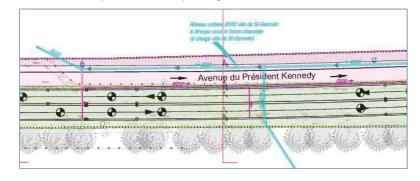
Caractéristiques principales des noues de stockage/infiltration :

		Noue	N01	Noue N	102
Stockage par tranchée de rétention :					
Hauteur utile NPHE 10 ans sous exutoire drain plateforme =		2	m	3	m
	Largeur utile =	1	m	1,3	m
	Longueur utile =	75	m	90	m
	Profondeur / pente =	400	m	600	m
	porosité =	0,3		0,3	
	pente longitudinale =	0,005	m/m	0,005	m/m
	Volume stocké =	41	m3	98	m3
	Volume à stocker =	38	m3	80	m3
Réserve volume de stockage au dessus de	u NPHE 10 ans (*) =	23	m3	27	m3
Volume supplémentaire à stock	ker T20 (0,25xV10) =	9	m3	20	m3
Volume supplémentaire à stor	cker T50 (0,6xV10) =	23	m3	48	m3
(*) sur la base de 0,3m3/ml					
lérification du débit de fuite de la tranchée de rét			NO1	Noue N	ina
renncauon du debit de idite de la tranchée de ret	tention :	Noue		Noue n	
erification du debit de fulte de la tranchée de ret	vitesse =	0,000001		0,000001	
Surface d'infiltration néce	vitesse =	0,000001			m3/m2/s
Surface d'infiltration néce	vitesse =	0,000001	m3/m2/s m2	0,000001	m3/m2/s m2
Surface d'infiltration néce Surface des parois	vitesse = essaire calée sur qf =	0,000001 76 300	m3/m2/s m2	0,000001 162	m3/m2/s m2 m2
Surface d'infiltration néce Surface des parois Surf	vitesse = essaire calée sur qf = non étanchées Sp =	0,000001 76 300	m3/m2/s m2 m2 m2	0,000001 162 540	m3/m2/s m2 m2 m2
Surface d'infiltration néce Surface des parois Sur Test Surface effi	vitesse = essaire calée sur qf = non étanchées Sp = face de la base Sb =	0,000001 76 300 75	m3/m2/s m2 m2 m2 m2 m2	0,000001 162 540 117	m3/m2/s m2 m2 m2 m2 m2
Surface d'infiltration néce Surface des parois Sur Test Surface effi	vitesse = essaire calée sur qf = non étanchées Sp = face de la base Sb = cace à 1/3(Sp+Sb) = e efficace à 1/3(Sp) =	0,000001 76 300 75 125	m3/m2/s m2 m2 m2 m2 m2	0,000001 162 540 117 219	m3/m2/s m2 m2 m2 m2 m2
Surface d'infiltration néce Surface des parois Surf Test Surface effi Test Surface	vitesse = essaire calée sur qf = non étanchées Sp = face de la base Sb = cace à 1/3(Sp+Sb) = e efficace à 1/3(Sp) =	0,000001 76 300 75 125	m3/m2/s m2 m2 m2 m2 m2 m2 m2 m2	0,000001 162 540 117 219	m3/m2/s m2 m2 m2 m2 m2 m2
Surface d'infiltration néce Surface des parois Surf Test Surface effi Test Surface	vitesse = ssaire calée sur qf = non étanchées Sp = face de la base Sb = cace à 1/3(Sp+Sb) = e efficace à 1/3(Sp) = se des Qf BR voirie : vitesse =	0,000001 76 300 75 125 100 0,000001	m3/m2/s m2 m2 m2 m2 m2 m2 m2 m2	0,000001 162 540 117 219	m3/m2/s m2 m2 m2 m2 m2 m2 m2 m2 m3/m2/s
Surface d'infiltration néce Surface des parois Surf Test Surface effi Test Surface Profondeur complémentaire tranchées pour repris	vitesse = ssaire calée sur qf = non étanchées Sp = face de la base Sb = cace à 1/3(Sp+Sb) = e efficace à 1/3(Sp) = se des Qf BR voirie : vitesse = lée sur qf BR voirie =	0,000001 76 300 75 125 100 0,000001 77	m3/m2/s m2 m2 m2 m2 m2 m2 m2 m2 m3/m2/s	0,000001 162 540 117 219 180 0,000001	m3/m2/s m2 m2 m2 m2 m2 m2 m2 m2 m3/m2/s
Surface d'infiltration néce Surface des parois Sur Test Surface effic Test Surface Profondeur complémentaire tranchées pour repris Surface d'infiltration nécessaire cal	vitesse = ssaire calée sur qf = non étanchées Sp = face de la base Sb = cace à 1/3(Sp+Sb) = e efficace à 1/3(Sp) = se des Qf BR voirie : vitesse = lée sur qf BR voirie =	0,000001 76 300 75 125 100 0,000001 77	m3/m2/s m2 m2 m2 m2 m2 m2 m2 m2 m3/m2/s m3/m2/s	0,000001 162 540 117 219 180 0,000001 155	m3/m2/s m2
Surface d'infiltration néce Surface des parois Sur Test Surface effic Test Surface Profondeur complémentaire tranchées pour repris Surface d'infiltration nécessaire cal	vitesse = ssaire calée sur qf = non étanchées Sp = face de la base Sb = cace à 1/3(Sp+Sb) = efficace à 1/3(Sp) = e des Qf BR voirie :	0,000001 76 300 75 125 100 0,000001 77	m3/m2/s m2 m2 m2 m2 m2 m2 m2 m3/m2/s m3/m2/s m m	0,000001 162 540 117 219 180 0,000001 155	m3/m2/s m2 m2 m2 m2 m2 m2 m2 m2 m2 m3/m2/s m2 m
Surface d'infiltration néce Surface des parois Surf Test Surface effi Test Surface Profondeur complémentaire tranchées pour repris Surface d'infiltration nécessaire cal Profondeur supplémentaire sous tra	ssaire calée sur qf = non étanchées Sp = face de la base Sb = cace à 1/3(Sp+Sb) = e efficace à 1/3(Sp) = se des Qf BR voirie : vitesse = lée sur qf BR voirie = nchée de rétention = Largeur utile =	0,000001 76 300 75 125 100 0,000001 77 1	m3/m2/s m2 m3/m2/s m2 m m m	0,000001 162 540 117 219 180 0,000001 155 1	m3/m2/s m2 m2 m2 m2 m2 m2 m3/m2/s m2 m m


Tangentielle Ouest (TGO) Phase 1

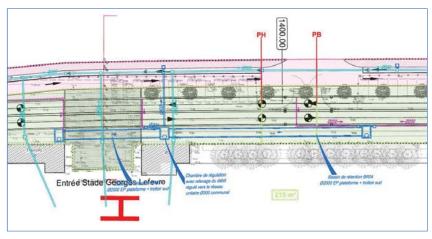
NOTE ASSAINISSEMENT NOTE TECHNIQUE

Caractéristiques principales des bassins de rétention sous voirie :


		BR0	1	BR02	2
Stockage par DN 2000 enterrée pour les eaux de voirie :		BR n ^a Vo	oirie 1	BR nº2 Vo	irie 2
Liné	eaire DN 2000 =	13	ml	26	ml
	Pente =	0,005	m/m	0,005	m/m
Volume stocké à pleine section avale =		39	m3	78	m3
Volume V10 à stocker =		38	m3	77	m3

Entrée du Camp des Loges - station Camp des Loges :

Sur cette sous-séquence minérale de 500 ml environ, il est proposé :


 Le dévoiement du réseau unitaire DN300 par la Ville de Saint-Germain-en-Laye concessionnaire de ce réseau et le raccordement des bouches avaloirs voirie sur celui-ci ainsi que le rétablissement des branchements en provenance du Camp des Loges;

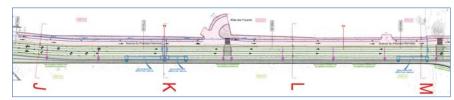
2) La mise en œuvre d'un bassin de rétention enterré DN2000 pour le stockage des eaux pluviales générées par la plateforme ; celui-ci est constitué de deux collecteurs DN2000 accessibles en maintenance via le trottoir sud dont la largeur est supérieure ou égale à 3 m. Compte tenu de la présence du réseau DN300 unitaire et de la difficulté à infiltrer sur cette partie du projet, une chambre de relevage du débit régulé est proposée pour raccordement à ce collecteur DN300 unitaire.

Extrait plan réf.TGO1_C5081_AVP_ARTE_PLA_ASS_D_192_58147_A01

Caractéristiques principales :

		BR03		BR04		
Stokage par DN 2000 enterrée pour les eaux de voirie :		BR n ³ Plateforme BR n ³		BR n ⁹ 4 Pla	Plateforme	
Linéaire I	DN 2000 =	25	ml	50	ml	
	Pente =	0,005	m/m	0,005	m/m	
Volume stocké à pleine secti	on avale =	75	m3	150	m3	
Volume à	stocker =	106	m3	102	m3	
			sous-total I	3R03+BR04		
Volume stocké à pleine section avale =				225	m3	
		Volume à	stocker =	209	m3 Ok	

Tangentielle Ouest (TGO)
Phase 1


NOTE ASSAINISSEMENT NOTE TECHNIQUE

Station Camp des Loges - carrefour Av. Kennedy/RD284 :

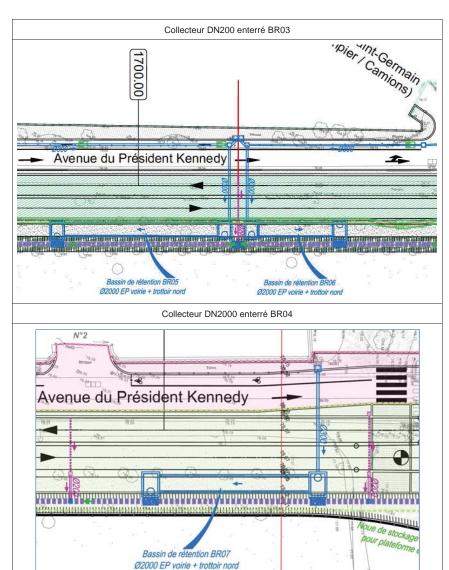
Sur cette sous-séquence de 300 ml environ, le même principe envisagé sur les 200 premiers ml est reconduit :

- 1) Un réseau de collecte des eaux pluviales de la voirie DN300 mm min. (chaussée + trottoir nord) avec bassin de rétention enterré DN2000 pour amélioration de la situation actuelle (rejet direct des eaux pluviales vers la lisière forestière). En l'absence d'exutoire assainissement sur cette sousséquence, le débit de fuite du bassin de rétention est repris par la tranchée de stockage/infiltration située en rive sud; ceci nécessite un approfondissement de la tranchée pour intégrer la surface d'infiltration nécessaire à la reprise de ce débit de fuite.
- 2) Deux noues végétalisées de faible profondeur (50 cm) reprenant en direct les eaux de ruissellement du trottoir sud (deux points bas sur ces 200 ml). En sous-face de la noue, une tranchée de rétention/infiltration recueille en gravitaire les eaux de ruissellement de la plateforme végétalisée sur longrine. Le volume 10 ans de stockage de la tranchée est calé sous le niveau du point de raccordement le plus bas de la plateforme (NPHE 10 ans).

Extrait Plan réf. TGO1 C5081 AVP ARTE PLA ASS D 192 58147 A01

67/127

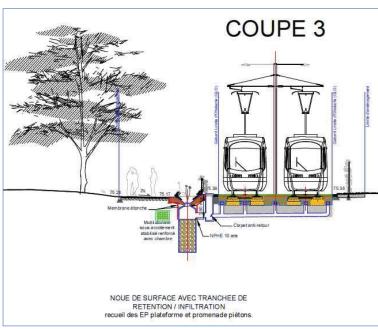
Caractéristiques principales des noues de stockage/infiltration :


		Noue	N03	Noue	N04
Stockage par tranchée de rétention :					
Hauteur utile NPHE 10 ans sous exute	oire drain plateforme =	2	m	2	m
	Largeur utile =	1,3	m	1	m
	Longueur utile =	260	m	90	m
	Profondeur / pente =	400	m	400	m
	porosité =	0,3		0,3	
	pente longitudinale =	0,005	m/m	0,005	m/m
	Volume stocké =	137	m3	48	m3
	Volume à stocker =	129	m3	35	m3
Réserve volume de stockage au dessus du NPHE 10 ans (*) =			m3	27	m3
Volume supplémentaire à sto	cker T20 (0,25xV10) =	32	m3	9	m3
Volume supplémentaire à st	ocker T50 (0,6xV10) =	77	m3	21	m3
(*) sur la base de 0,3m3/ml					
Vérification du débit de fuite de la tranchée de ré	étention :	Noue	N03	Noue	N04
Vérification du débit de fuite de la tranchée de ré	etention : vitesse =	Noue 0,000001		Noue 0,000001	
Vérification du débit de fuite de la tranchée de ré Surface d'infiltration néc	vitesse =		m3/m2/s	0,000001	
Surface d'infiltration néc Surface des paroi	vitesse = essaire calée sur qf = s non étanchées Sp =	0,000001	m3/m2/s m2	0,000001	m3/m2/s m2
Surface d'infiltration néc Surface des paroi	vitesse = essaire calée sur qf =	0,000001 261	m3/m2/s m2 m2	0,000001 71 360	m3/m2/s m2
Surface d'infiltration néc Surface des paroi Su	vitesse = essaire calée sur qf = s non étanchées Sp =	0,000001 261 1040	m3/m2/s m2 m2 m2	0,000001 71 360	m3/m2/s m2 m2 m2
Surface d'infiltration néc Surface des paroi Su Test Surface ef	vitesse = ressaire calée sur qf = s non étanchées Sp = urface de la base Sb =	0,000001 261 1040 338	m3/m2/s m2 m2 m2 m2 m2	0,000001 71 360 90	m3/m2/s m2 m2 m2 m2 m2
Surface d'infiltration néc Surface des paroi Su Test Surface ef Test Surfac	vitesse = vessaire calée sur qf = s non étanchées Sp = urface de la base Sb = ficace à 1/3(Sp+Sb) = ve efficace à 1/3(Sp) =	0,000001 261 1040 338 459	m3/m2/s m2 m2 m2 m2 m2	0,000001 71 360 90 150	m3/m2/s m2 m2 m2 m2 m2
Surface d'infiltration néc Surface des paroi Su Test Surface ef	vitesse = vessaire calée sur qf = s non étanchées Sp = urface de la base Sb = ficace à 1/3(Sp+Sb) = ve efficace à 1/3(Sp) =	0,000001 261 1040 338 459	m3/m2/s m2 m2 m2 m2 m2 m2	0,000001 71 360 90 150	m3/m2/s m2 m2 m2 m2 m2 m2
Surface d'infiltration néc Surface des paroi Su Test Surface ef Test Surfac	witesse = sessaire calée sur qf = s non étanchées Sp = urface de la base Sb = ficace à 1/3(Sp+Sb) = se efficace à 1/3(Sp) = se des Qf BR voirie : witesse =	0,000001 261 1040 338 459 347	m3/m2/s m2 m2 m2 m2 m2 m2 m2 m3/m2/s	0,000001 71 360 90 150 120	m3/m2/s m2 m2 m2 m2 m2 m2
Surface d'infiltration néc Surface des paroi St Test Surface ef Test Surfac Profondeur complémentaire tranchées pour repr	witesse = sessaire calée sur qf = s non étanchées Sp = ufface de la base Sb = ficace à 1/3(Sp+Sb) = se efficace à 1/3(Sp) = se des Qf BR voirie : witesse = alée sur qf BR voirie =	0,000001 261 1040 338 459 347 0,000001	m3/m2/s m2 m2 m2 m2 m2 m2 m2 m3/m2/s	0,000001 71 360 90 150 120 0,000001	m3/m2/s m2 m2 m2 m2 m2 m2
Surface d'infiltration néc Surface des paroi Su Test Surface ef Test Surfac Profondeur complémentaire tranchées pour repri Surface d'infiltration nécessaire c	witesse = sessaire calée sur qf = s non étanchées Sp = ufface de la base Sb = ficace à 1/3(Sp+Sb) = se efficace à 1/3(Sp) = se des Qf BR voirie : witesse = alée sur qf BR voirie =	0,000001 261 1040 338 459 347 0,000001 240	m3/m2/s m2 m2 m2 m2 m2 m2 m2 m3/m2/s m3/m2/s	0,000001 71 360 90 150 120 0,000001 65	m3/m2/s m2 m2 m2 m2 m2 m2 m3/m2/s
Surface d'infiltration néc Surface des paroi Su Test Surface ef Test Surfac Profondeur complémentaire tranchées pour repri Surface d'infiltration nécessaire c	vitesse = eessaire calée sur qf = s non étanchées Sp = uface de la base Sb = ficace à 1/3(Sp+Sb) = ee efficace à 1/3(Sp) = ise des Qf BR voirie : vitesse = alée sur qf BR woire = anchée de rétention =	0,000001 261 1040 338 459 347 0,000001 240	m3/m2/s m2 m2 m2 m2 m2 m2 m2 m2 m2 m3/m2/s m2 m	0,000001 71 360 90 150 120 0,000001 65	m3/m2/s m2 m2 m2 m2 m2 m2 m2 m2 m3/m2/s m2 m
Surface d'infiltration néc Surface des paroi Su Test Surface ef Test Surfac Profondeur complémentaire tranchées pour repr Surface d'infiltration nécessaire c Profondeur supplémentaire sous tr	vitesse = essaire calée sur qf = s non étanchées Sp = urface de la base Sb = ficace à 1/3(Sp+Sb) = te efficace à 1/3(Sp) = se efficace à 1/3(Sp) = dise des Qf BR voirie : vitesse = alée sur qf BR voirie = anchée de rétention = Largeur utile =	0,000001 261 1040 338 459 347 0,000001 240 1	m3/m2/s m2 m2 m2 m2 m2 m2 m2 m2 m3/m2/s m2 m m	0,000001 71 360 90 150 120 0,000001 65	m3/m2/s m2 m2 m2 m2 m2 m2 m2 m2 m3/m2/s m3/m2/s m m

Caractéristiques principales des bassins de rétention sous voirie :

		BR05 e	et BR06	В	R07
Stockage par DN 2000 enterrée pour	Stockage par DN 2000 enterrée pour les eaux de voirie :		BR n ^o 5 et 6 Voirie 3		Voirie 4
	Linéaire DN 2000 =	41	ml	11	ml
	Pente =	0,005	m/m	0,005	m/m
Volume stocké à	pleine section avale =	123	m3	33	m3
Vo	Volume V10 à stocker =		m3	32	m3
	1		réparti au prorata en deux sous-bas		S
		27	ml		
		14	ml		

Tangentielle Ouest (TGO) Phase 1

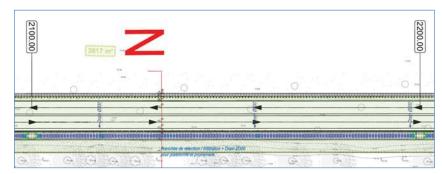

2.2.1.3 <u>Séquence RD284</u>

Sur cette séquence de plus de 1500 ml, l'insertion de la plateforme se situe principalement en lisière de forêt, le bord ouest de la plateforme est quant à lui situé à plus de 20 m du fossé latéral de la RD284. Aussi, le projet prévoit la réalisation d'une noue entre la plateforme et la promenade piéton/cycle existante remaniée. Cette insertion répond à plusieurs objectifs :

- Collecte des eaux pluviales de la plateforme et stockage/infiltration via une tranchée mise en œuvre sous la noue; cette noue collecte en surface le ruissellement de la promenade remaniée qui est traitée en stabilisé renforcé.
- Accessibilité/maintenance de cette noue/tranchée depuis la promenade large de 3 m permettant la circulation d'un véhicule d'entretien,
- Effet de séparation entre la promenade et la plateforme en section courante 70 km/h hors carrefours.
- Accessibilité piéton à la plateforme pour les pompiers depuis d'un véhicule de secours.

C'est pourquoi, il est fait le choix de noue/tranchée de rétention et infiltration sur un linéaire moyen de 100 ml.

La coupe ci-dessous permet d'illustrer le principe proposé :



Tangentielle Ouest (TGO)
Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

Canton de 100 ml : Extrait plan réf. TGO1_C5081_AVP_ARTE_PLA_ASS_D_201_58149_A01

Caractéristiques principales par canton de 100 ml au droit de la contre-allée (variante retenue sur 600 ml) :

		Plate	forme
Stockage par tranchée de rétention :			
Hauteur utile NPHE 10 ans sous exutoire drain pla	1,5	m	
Large	eur utile =	1	m
Longue	eur utile =	100	m
	0,3		
pente longi	tudinale =	0,005	m/m
Volume	stocké =	38	m3
Volume à	stocker =	36	m3
Vérification du débit de fuite de la tranchée de ré-	tention:		
	vitesse =	0,000001	m3/m2/s
Surface d'infiltration nécessaire calé	e sur qf =	72	m2
Surface des parois non étanchées à - 1,5 m sous le	e TN Sp =	300	m2
Surface de la b	base Sb =	100	m2
Test Surface efficace à 1/3((Sp+Sb) =	133	m2
Test Surface efficace à	1/3(Sp) =	100	m2

Adaptation locale dans le cadre de l'AVP V1 entre le carrefour RD284/Kennedy et l'usine de désenfumage de l'A14 :

La présence de l'usine enterrée de désenfumage de l'A14 sous le tracé initialement envisagé en Etudes Préliminaires à nécessité d'étudier des solutions alternatives. L'étude de faisabilité conduite par le Maître d'œuvre GTGO en novembre 2014, présentée à la Ville de Saint-Germain-en-Laye et transmise par ailleurs au Département des Yvelines, a conduit à retenir une solution d'insertion de la plateforme dans la contre-allée entre les arbres du double alignement existant (ces arbres seront replantés dans le cadre du projet).

71/127

Cette adaptation du tracé se développe sur 600 ml environ entre le carrefour RD284/Av. Kennedy et l'usine de désenfumage de l'A14. Au-delà le tracé s'insère dans l'épure du tracé des Etudes Préliminaires.

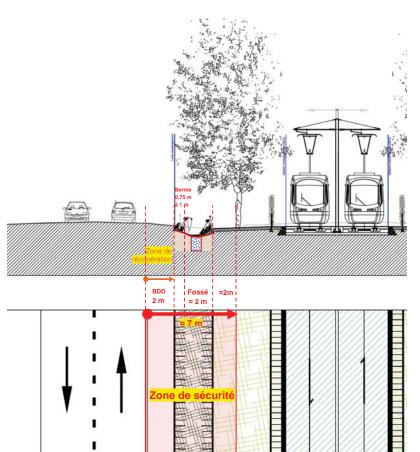
Toutefois, cette insertion impacte la rive ouest de la RD284. En effet, afin de permettre un développement suffisant des futurs arbres il serait nécessaire de reprendre le fossé Est de la RD 284 et de le rapprocher légèrement de la voirie. De fait ce rapprochement nécessiterait de réduire la largeur de l'accotement libre entre la chaussée et l'actuel fossé. Cette largeur est aujourd'hui d'environ 4 m. Cette largeur de 4 m résulte de l'application des Recommandations techniques pour l'Aménagement des Routes principales (ARP 60).

Dans la configuration actuelle de la RD284, l'accotement est constitué :

- D'une partie dégagée de tout obstacle à droite de la chaussée et appelée bande dérasée droite
- Bordée à l'extérieur d'une berme engazonnée avant fossé
 Le tout (BDD + Berme) sur une largeur cumulée de 4 m
- Puis d'un fossé, ici de 3 m de large environ et de faible profondeur (20 cm à 30 cm)
- Puis d'arbres d'alignement à 50 cm environ de la crête de fossé

Dans le cadre du projet, on se place dans la configuration d'un aménagement de route existante, en prévoyant :

- La reconstitution d'une sur-largeur de chaussée de 0,25 m et d'une bande dérasée stabilisée de 1,75 m soit 2 m au total constituant la zone de récupération permettant la récupération d'un véhicule déviant de sa trajectoire normale,
- La reconstitution d'une berme de 0.75 m.
- Le rétablissement d'un fossé de faible profondeur (20 cm environ) et ce vis-à-vis du critère sécurité dans la zone de sécurité; la largeur fossé + berme constituant une surface d'infiltration de 2,75 m²/ml environ.
- L'élimination ou l'isolement d'obstacles fixes agressifs (plantation): dans le cas présent l'axe de rétablissement de la trame d'alignement est situé à 7 m du bord Est de la chaussée. La largeur de la zone de sécurité dépourvue de tout obstacle risquant d'augmenter les conséquences corporelles d'une sortie de chaussée est normalement de 4 m en aménagement de route existante et de 7 m en aménagement neuf ou en cas d'implantation d'obstacles nouveaux sur une route existante. Dans le cas présent, le projet prévoit la replantation de la trame existante à peu près à son emplacement existant en restant dans une épure à 7 m du bord de chaussée. La distance de sécurité entre bord de chaussée et plantation ne serait donc pas modifiée.


Le schéma ci-après permet d'illustrer ces dispositions :

Tangentielle Ouest (TGO)
Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

Le Département des Yvelines a fait un retour sur cette proposition en validant celle-ci sur sous réserve de lui confirmer qu'il disposera d'une capacité d'infiltration équivalente à l'existant au niveau du fossé latéral Est recalibré.

Contre-allée

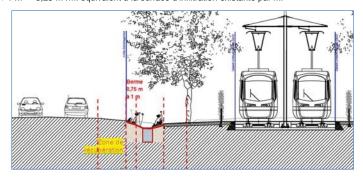
Plateforme

GLO

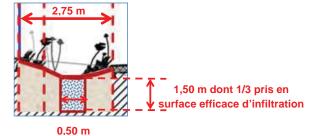
Accotements Noue

La capacité d'infiltration du fossé existant est estimée de la manière suivante : Q fuite = K x Surface miroir du fossé de l'ordre de 3 m²/ml.

Avenue des Loges

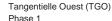


73/127

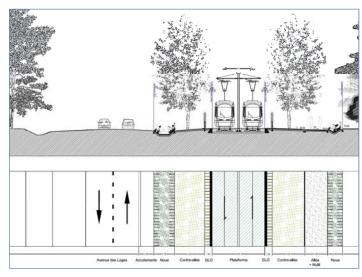

Dans le cadre du projet, la largeur du fossé berme comprise est réduite à 2,75 m. On considèrera dans le cas présent une réduction de la surface miroir du fossé de 0,5 m environ.

Le projet propose de compenser cette réduction de la surface d'infiltration par la création d'une tranchée de rétention/infiltration de 50 cm de large et de 1,5 m de profondeur sous le fossé recalibré :

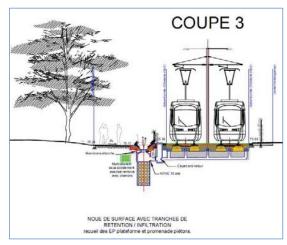
- vitesse ou coefficient d'infiltration K = 10⁻⁶ m³/m²/s
- surface des parois non étanchées sous le terrain naturel Sp = 1,5 m x 2 = 3 m²
- Surface efficace prise égale à 1/3(Sp) = 1 m²
- Surface totale résultante d'infiltration en négligeant le fond de la tranchée par ml = 2,75 m² 0,5 m²
 + 1 m² = 3,25 m²/ml équivalent à la surface d'infiltration existante par ml



Zoom sur le rétablissement du fossé latéral Est RD284 sur environ 600 ml

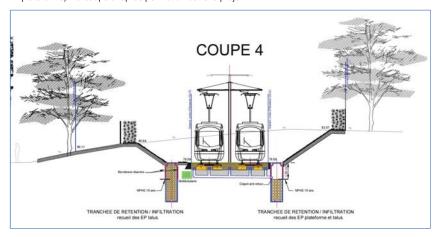

Toutefois, compte tenu de la faible profondeur du fossé existant et projeté, l'intégration du pied d'arbre au fossé pourra le cas échéant être examinée en phase PRO pour essayer de maintenir cette largeur actuelle de 3 m.

Concernant la plateforme, celle-ci continue d'être assainie selon le principe décrit plus haut via une noue de surface avec tranchée de rétention et infiltration; cette fois-ci la noue est implantée en lisière de forêt et en rive du cheminement piétons/cycles rétabli comme illustré sur la coupe ci-après:


NOTE ASSAINISSEMENT NOTE TECHNIQUE

Coupe générale Avenue des Loges entre carrefour RD284/Kennedy et usine de désenfumage A14

Au-delà de l'usine de désenfumage de l'A14, le principe d'assainissement de la plateforme reste identique selon la coupe de principe ci-après :



Au niveau de la piscine olympique, l'insertion de la plateforme nécessite de reprendre le talus existant ; dans cette configuration le projet prévoit :

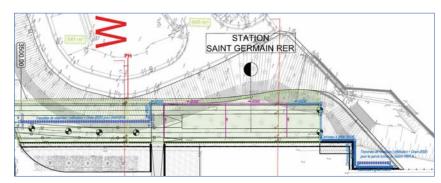
- La réalisation d'une tranchée de rétention/infiltration en rive ouest de la plateforme reprenant les eaux de ruissellement du talus,
- La réalisation d'une tranchée de rétention/infiltration des eaux pluviales de la plateforme et du talus côté piscine.

Sur ces 200 ml relativement contraints, l'accès maintenance ne pourra se faire que depuis la plateforme). La coupe ci-après permet d'illustre le projet.

Les caractéristiques de ces tranchées sont sensiblement équivalentes à celles de la tranchée de rétention/infiltration de la section courante Avenue des Loges.

Terminus RER A:

En terminus, il est également proposé la mise en place d'une tranchée de rétention et infiltration entre les deux voies V1 et V2 à l'approche du quai axial du terminus à défaut d'exutoire.


Compte tenu de la pente à 4 % entre le nez de quai et la future galerie de liaison au RER A, des caniveaux à grille en périphérie de la placette et en limite de l'accès à la galerie devront être mise en œuvre. Compte de la situation des remblais du terminus entre les ouvrages de soutènement à réaliser pour l'insertion du terminus, le principe de l'infiltration n'a pas été retenu dans ce cas particulier; les eaux de ruissellement du terminus seront plutôt stockées dans des tranchées étanches avec un raccordement à débit régulé sur un éventuel exutoire EP de la RATP à définir via convention de rejet.

Tangentielle Ouest (TGO)
Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

Terminus RER A: Extrait plan TGO1_C5081_AVP_ARTE_PLA_ASS_D_205_58153_A01

Un caniveau en pied du mur de soutènement du parc sera également mis en œuvre pour reprendre les EP résiduels du drainage du soutènement et sera raccordé à cette tranchée drainante ou/et à celle située entre les voies V1 et V2. Le local d'exploitation devra disposer d'un raccordement EU ou d'un assainissement autonome compte tenu de l'absence de réseau unitaire ou eaux usées à proximité immédiate. Ce point reste encore à préciser. Dans le cadre des études PRO, une alternative de raccordement au réseau EU de la RATP sera recherchée via convention de rejet à définir.

77/127

2.2.1.4 Bilan de l'infiltration dans le sol sur le périmètre Saint-Germain

Le tableau ci-après constitue un récapitulatif des débits d'infiltration dans le sol par sous-séquence du périmètre Saint-Germain :

perimetre Saint-Germain .	
Bilan de l'infiltration en rive de la RN184	
Plateforme tram-train au débranchement du RFN avant traversée de la RN184 Tranchée de rétention/infiltration en sur-largeur	Débit d'infiltration résultant ≈ 0,07 l/s
Plateforme en sortie de la Lisière Pereire et en rive de la lisière forestière avant d'arriver sur le carrefour RN184/RD190 (y compris voie verte) Tranchée de rétention/infiltration en sur-largeur	Débit d'infiltration résultant ≈ 0,14 l/s
Plateforme au droit du TPC carrefour RD190 (y compris voie verte)	Débit d'infiltration résultant ≈ 0,05 l/s
Plateforme tram-train + voie verte entre le carrefour RN184/RD190 et le carrefour RN184/Av. Kennedy.	Débit d'infiltration résultant ≈ 0,30 l/s
Tranchée de rétention/infiltration sous voie verte	
RN184 / reprise bassin versant demi-chaussée entre la traversée RN184 de la plateforme et le carrefour avec la RD190 ; fossé d'infiltration	Débit d'infiltration résultant ≈ 0,10 l/s (il s'agit d'eaux de ruissellement correspondant à une situation existante, la RN184 étant déjà doté d'un fossé de collecte/infiltration)
RN184 / reprise bassin versant demi-chaussée Est via tranchée de rétention/infiltration entre la RD190 et l'avenue Kennedy ; fossé d'infiltration	Débit d'infiltration résultant ≈ 0,19 l/s (il s'agit d'eaux de ruissellement correspondant à une situation existante, la RN184 étant déjà doté d'un fossé de collecte/infiltration)
	Débit totale d'infiltration ≈ 0,9 l/s Dont environ : • 0,3 l/s pour la voirie RN184 (bassin versant déjà drainé actuellement) • 0,6 l/s pour la plateforme tram-train et les espaces directement contigus à la plateforme (voie verte principalement)

Tangentielle Ouest (TGO) Phase 1

Bilan de l'infiltration Avenue Kennedy	
Avenue Kennedy - tranchée de rétention noue 1 Plateforme + accotement sud + noue	Débit d'infiltration résultant ≈ 0,08 l/s
Avenue Kennedy - tranchée de rétention noue 2 Plateforme + accotement sud + noue	Débit d'infiltration résultant ≈ 0,16 l/s
Avenue Kennedy - Bassin de rétention voirie 1 Trottoir nord + chaussée / mise en conformité existant	Débit d'infiltration résultant ≈ 0,08 l/s
Avenue Kennedy - Bassin de rétention voirie 2 Trottoir nord + chaussée / mise en conformité existant	Débit d'infiltration résultant ≈ 0,16 l/s
Avenue Kennedy - Bassin rétention Plateforme + accotement sud entre accès principal Camp des Loges et Entrée Stade	Débit de fuite de 0,22 l/s raccordé sur le réseau unitaire DN300 dévié Ville de Saint-Germain (raccordement par relevage du débit régulé)
Avenue Kennedy - Bassin rétention Plateforme + accotement sud entre Entrée Stade et Complexe sportif	Débit de fuite de 0,21 l/s raccordé sur le réseau unitaire DN300 dévié Ville de Saint-Germain (raccordement par relevage du débit régulé)
Avenue Kennedy - tranchée de rétention noue 3 Plateforme + accotement sud + noue	Débit d'infiltration résultant ≈ 0,20 l/s
Avenue Kennedy - tranchée de rétention noue 4 Plateforme + accotement sud + noue	Débit d'infiltration résultant ≈ 0,07 l/s
Avenue Kennedy - Bassin de rétention voirie 3 Trottoir nord + chaussée / mise en conformité existant	Débit d'infiltration résultant ≈ 0,26 l/s
Avenue Kennedy - Bassin de rétention voirie 4 Trottoir nord + chaussée / mise en conformité existant	Débit d'infiltration résultant ≈ 0,07 l/s
	Débit totale d'infiltration ≈ 1,1 l/s
	dont environ :
	≈ 0,6 l/s pour la voirie ≈ 0,5 l/s pour la plateforme tram-train et les espaces piétons directement contigus en rive sud de la plateforme

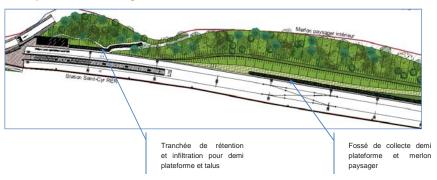
Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

Bilan de l'infiltration sur l'Avenue des Loges					
Section courante plateforme + fossé + accotement par canton de 100 ml	Débit d'infiltration résultant ≈ 0,07 à 0,08 l/s				
Linéaire concerné entre le carrefour RD284/Av. Kennedy et l'usine A14 : 600 ml soit 6 cantons	Débit d'infiltration résultant ≈ 0,48 l/s				
Linéaire concerné entre l'usine A14 et le carrefour RD284/RD157 : 600 ml soit 6 cantons	Débit d'infiltration résultant ≈ 0,42 l/s				
Linéaire concerné entre le carrefour RD284/RD157 et le carrefour RD284/Chemin des Carrières : 300 ml soit 3 cantons	Débit d'infiltration résultant ≈ 0,21 l/s				
Linéaire concerné entre le carrefour RD284/Chemin des Carrières et la station terminus TGO comprise : 100 ml soit 1 canton	Débit d'infiltration résultant ≈ 0,07 l/s				
	Débit totale d'infiltration ≈ 1,2 l/s lié principalement au drainage de la plateforme tramtrain et à ses abords piétons ou espaces plantés immédiats				

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE



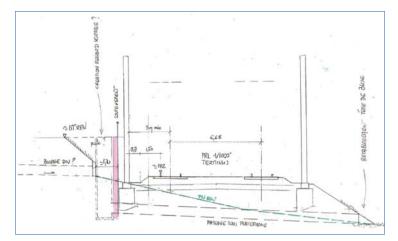
2.2.2 Périmètre Virgule Saint-Cyr (SP2)

2.2.2.1 Assainissement de la plateforme

La Virgule Saint-Cyr est décomposé en deux sous-séquences.

Sous-séquence terminus le long du mur de soutènement du RFN :

Extrait plan réf. TGO1_C5080_AVP_ARTE_PLA_AME_B_011_58066_B


Sur cette sous-séquence, le projet prévoit :

- La mise en œuvre d'une tranchée drainante en rive sud de la plateforme et en limite du futur mur de soutènement du RFN. Cette tranchée reprend les eaux pluviales de la demi-plateforme et dans une moindre mesure les eaux résiduelles de drainage du mur de soutènement,
- La réalisation d'un fossé en contrebas des futurs locaux LEX+SIG doté d'une tranchée de rétention et infiltration (point haut du projet largement à plus de 2 m du toit de la nappe observée à 124 NGF),
- La réalisation d'un fossé en rive nord de la plateforme côté nord; ce fossé reprend les eaux pluviales de la demi-plateforme nord et du merlon paysager intérieur nord (intégré en AVP Vf suite à la réunion ABF du 22/01/15).
- La mise en œuvre d'un busage DN800 Q100ans pour le rétablissement en contrebas du talus de la tête de buse reprenant le bassin versant naturel amont au RFN BVOH1. En aval de ce busage, les eaux pluviales se répartissent dans le champ agricole comme à l'existant avec pour exutoire actuelle la Grande Ceinture en contrebas.

81/127

Principe de busage DN800 sous la Virgule Saint-Cyr

Extrait plan réf. TGO1_C5081_AVP_ARTE_PLA_ASS_B_011_58154_B

Sous-séquence Virgule Saint-Cyr en aval du mur de soutènement du RFN :

Sur cette sous-séquence, la plateforme est en décaissé et bordée de fossés latéraux :

- Largeur en tête 2 m
- Largeur en fond = 50 cm
- Profondeur = 50 cm

Ces fossés latéraux reprennent chacun les eaux pluviales d'une demi-plateforme ainsi que les eaux de ruissellement des talus et des sur-largeurs en crête de talus.

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

Le volume global à stocker résultant pour une pluie 100 ans et un débit de fuite de 1l/s/ha est estimé à environ 440 m³ (cf. tableau ci-après mis à jour suivant les derniers plans de bassins versants de l'AVP Vf).

Ce volume correspond au stockage centennal des eaux de ruissellement générées par l'imperméabilisation supplémentaire induite par la Virgule Saint-Cyr. Il a été évalué selon les trois approches ratio DRIEE/recherche VBR max/méthode SEVESC, décrites précédemment.

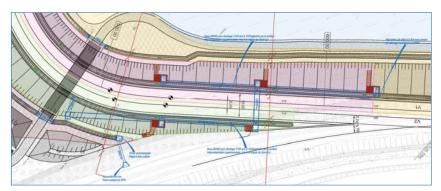
Ce volume V100 correspond à "V100 Bassin Versant Global Virgule état projet" – "V100 Bassin Versant Global Virgule état existant". Les calculs associés sont joints en annexe.

Ce volume est stocké dans deux collecteurs DN 2000 implantés à l'exutoire des fossés avant le raccordement à la Grande Ceinture. Compte tenu du profil en long de la Virgule, les fils d'eau de ces collecteurs à faible pente (0,5 %) sont relativement profonds (entre 5 m de profondeur en aval et 10 m de profondeur en tête) :

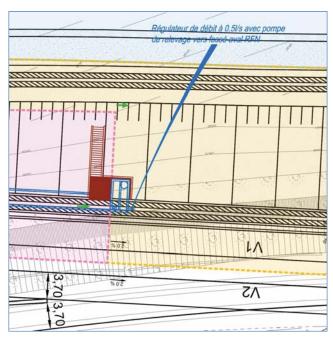
- Un collecteur DN2000 en rive sud-est de la virgule : V100 ≈ 230 m3 (Capacité max. = 270 m³)
- Ce collecteur est raccordé sous plateforme via un DN800 à un second collecteur DN2000 en rive nord-ouest de la virgule: V100 ≈ 210 m3 (Capacité max. = 230 m³)

Le tableau fait la synthèse de la capacité globale de stockage des réseaux enterrés : V max ≈ 630 m³.

	Capacité de rétention des collecteurs DN2000						
	Volume stocké par le DN2000 Ouest de 90 ml =	270,00	m3				
	Volume stocké par le DN2000 Est de 80 ml =	240,00	m3				
Volume stoo	ké via liaison DN2000 entre les collecteurs sur 16 ml =	48,00	m3				
	Volume stocké au droit des regards =	72,00 m3 (4 m2 au sol sur 3 m de mise en charge x 6			arge x 6 un	ités)	
		630.00	m3				


 A l'exutoire du collecteur DN2000 Ouest, le débit est régulé par un vortex à ≈ 0,45l/s via une chambre de régulation avec relevage du débit régulé vers le fossé aval nord-ouest de la virgule convergeant vers le fossé latéral de la Grande Ceinture. Ce débit de 0,45 l/s correspond à l'application du débit de fuite de 1l/s/ha à la surface active nouvellement imperméabilisée par le projet :

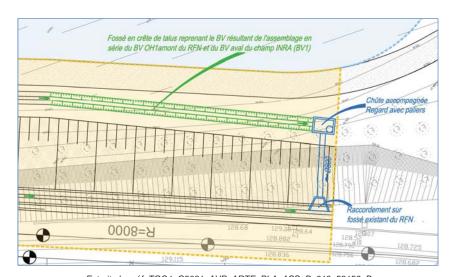
	A =	0,723 ha Est	0,844 ha Ouest	1,567 ha
	Q fuite 1l/s/ha =	0,723 l/s	0,844 l/s	1,567 l/s
	Coefficient apport existant C10 =	0,35	0,35	
	Coefficient apport projet C10 =	0,66	0,59	
Surface active supplémentaire	e résultante A x (Ca projet - Ca exi)=	0,22 ha	0,20 ha	0,43 ha


- Des grilles avaloir en fond des fossés latéraux de la Virgule Saint-Cyr avec décantation permettent de recueillir les eaux de ruissellement vers les deux bassins enterrés DN2000 sous fossés,
- Compte tenu de la profondeur de ces collecteurs, des chambres d'accès avec paliers intermédiaires sont créés tous les 50 ml environ en limite des talus de la virgule. Pour ce faire des escaliers d'exploitation sont intégrés en talus pour accéder aux tampons de visite de ces chambres (cela nécessité ponctuellement la réalisation de muret de soutènement pour la reprise du talus).
- Le temps de vidange du volume V100 (440 m³) des deux collecteurs DN2000 enterrés est estimé à 10 jours pour un débit de fuite de ≈ 0,45 l/s.

Extrait général rétentions avales plan réf. TGO1_C5081_AVP_ARTE_PLA_ASS_B_013_58156_B

Extrait accès à la chambre de régulation plan réf. TGO1_C5081_AVP_ARTE_PLA_ASS_B_013_58156_B

Tangentielle Ouest (TGO) Phase 1


NOTE ASSAINISSEMENT NOTE TECHNIQUE

Dans le cadre des premiers échanges avec RFF et son MOE, la possibilité de récupération d'une partie du volume de rétention a été évoqué sur la base d'une première approche d'un volume de stockage 330 m³ (la surface du BV repris a été réévaluée dans le cadre de la production de l'AVP, le caractère provisoire de ce volume a été porté à connaissance de RFF qui a précisé qu'il examinerait en phase PRO la faisabilité d'une intégration de tout ou partie de ce volume dans son bassin aval).

2.2.2.2 Gestion de l'interception des bassins versants naturel par le projet

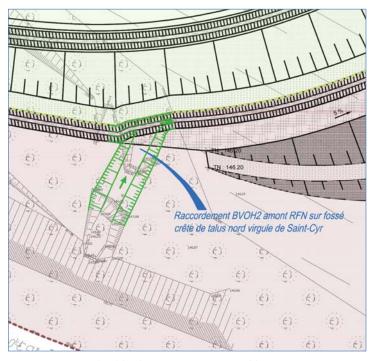
Concernant le bassin versant amont au RFN BV0H1, ce sujet a été traité plus haut : réalisation d'un busage DN800mm sous la Virgule Saint-Cyr puis diffusion des eaux de ruissellement dans le champ INRA comme à l'existant. Cette partie du champ d'une surface de l'ordre de 4 ha ruisselle naturellement vers un point bas en crête des talus de la GCO (noté BV1 ou BV Ouest). Le projet prévoit la réalisation d'un fossé de crête entre le chemin agricole déplacé pour les besoins du projet et la nouvelle crête de talus du RFN. Ce fossé recueille ainsi le bassin versant naturel résultant de l'assemblage en série du bassin versant naturel BV0H1 du bassin versant naturel BV1. Le débit résultant est raccordé vers son exutoire actuel au niveau de la Grande Ceinture. Pour cela un regard en tête avec chute accompagnée et busage+tête de buse est rendu nécessaire. Le zoom ci-après illustre cette proposition.

Extrait plan réf. TGO1_C5081_AVP_ARTE_PLA_ASS_B_013_58156_B

85/127

Les caractéristiques principales du débit résultant de cet assemblage sont les suivantes :

T = 100 ans	Calcul du débit résultant :		BV'1	_
	Rétention initiale bassin versant	38,49 mm		
	Coefficient de ruissellement C10	0,41		
	Temps de concentration tc100 =		73,76 mn	
		a =	755,00	
		b =	0,634	
		i100 =	49,40 mm/l	h
		Q 100 ev =	1042,39 l/s	
		Q100/Q10	2,34	
		Q100 ev retenu =	1042,39 l/s	
			1,04 m3/s	
		Q100 ev retenu	1,05 m3/s	


Concernant le second bassin versant amont au RFN noté BVOH2, le busage sous le RFN n'est pas impacté par le terrassement en déblais de la Virgule. Toutefois, les eaux de ruissellement en sortie de ce busage doivent être reprises par un fossé créé dans tous les cas en crête du talus sud de la Virgule. Ce fossé de crête reprendra également le bassin versant naturel du Champ INRA (noté BV2 ou BV Est d'une surface d'environ 1 ha) et le merlon paysager ABF créé en rive du tracé. Le fossé de crête est donc dimensionné pour reprendre l'assemblage en parallèle BV'2 des bassins versants BVOH2 et BV2. Ce fossé de crête est par ailleurs étanché.

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

Extrait plan réf. TGO1_C5081_AVP_ARTE_PLA_ASS_B_013_58156_B

Les caractéristiques principales du débit résultant de cet assemblage sont les suivantes :

T = 100 ans	Calcul du dé	bit résultant :			BV'2					
	Rétention ir	nitiale bassin versar	nt Fossé Vir	gule P0 =	39,69	mm	P0 = (1-C1	10/0,8)xP10)	
	Coefficient de ruissellement C100 = Temps de concentration tc100 =			0,40		C100 = 0,8	3x(1-P0/P1	00)		
				35,27	mn	tc100=tc1	0x(P100-P0))/(P10-P0)	1^(-0,23)	
				a =	755,00					
				b =	0,634					
				i100 =	78,87	mm/h				
				Q 100 ev =	698,30	I/s	Q100 = 2,	78xC100xi1	00xA	
				Q100/Q10	242					
					2,13					
			(Q100 ev retenu =	698,30	-				
					0,70	m3/s				
				Q100 ev retenu	0.70	m3/s				

87/127

Un fossé étanché est également aménagé en crête du talus nord de la Virgule Saint-Cyr, celui-ci reprend :

- les eaux de ruissellement de la voie de maintenance permettant un accès du rail route au terminus,
- les eaux de ruissellement du merlon paysager ABF,
- ce fossé recueille en aval les eaux de ruissellement du champ INRA décrit plus haut (bassin versant BV'1 résultant de l'assemblage des bassins versants BVOH1 et BV1); ces eaux de ruissellement ont pour exutoire la Grande Ceinture comme à l'existant.

2.2.2.3 Bilan des eaux de ruissellement renvoyées vers le fossé de la Grande Ceinture

Etat existant :

Bassin versant naturel BVOH1 situé en amont du RFN : 14 ha	Bassin versant naturel emprise de la virgule Saint-Cyr : ≈ 20 ha	Bassin versant naturel BVOH2 situé en amont du RFN : 7 ha
+ Bassin versant naturel agricole champ INRA en contrebas : 4 ha (BV Ouest)		+ Bassin versant naturel agricole champ INRA en contrebas : 1 ha (BV Est)
Bassin naturel résultant (BV'1): 18 ha	Bassin naturel résultant : 20 ha	Bassin naturel résultant (BV'2): 18 ha
Débits résultants vers le fossé ouest de la Grande Ceinture (diffusé) :	Débits résultants vers le fossé ouest de la Grande Ceinture dès Q10 :	Débits résultants vers le fossé ouest de la Grande Ceinture (diffusé) :
Q10 exi ≈ 0,49 m³/s	Q10 exi ≈ 0,10 m³/s	Q10 exi ≈ 0,33 m³/s
Q100 exi ≈ 1,05 m ³ /s	Q100 exi ≈ 0,24 m³/s	Q100 exi ≈ 0,70 m³/s

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

Etat Projet:

Bassin versant naturel BVOH1 situé en amont du RFN : 14 ha + Bassin versant naturel agricole champ INRA en contrebas : 4 ha (BV1 ou BV Ouest)	Cyr repris en poi 1,6 ha répartis bassins repris pa	e la virgule Saint- nt bas : environ en deux sous- ar des fossés de de la plateforme	Bassin versant naturel BVOH2 situé en amont du RFN : 7 ha + Bassin versant naturel agricole champ INRA en contrebas : 1 ha (BV2 BV Est)
Bassin naturel résultant (BV'1): 18 ha	BV repris par le fossé ouest: ≈ 0,75 ha BV repris par le cossé est: ≈ 0,85 ha		Bassin naturel résultant (BV'2): 18 ha
Rétablissement d'un busage sous la future Virgule pour la reprise du bassin BVOH1 vers le champ agricole INRA BV1 en contrebas comme à l'existant; ces eaux de ruissellement ainsi que celles du champ agricole sont reprises par un fossé créé en tête de talus de la Grande Ceinture avec buse de raccordement sur le fossé ouest de celle-ci.	Fossé ouest en pied de plateforme Rétention pluie 100 ans de la surface active supplémentaire générée par le projet soit 0,22 ha avec V100 ≈ 230 m³ dans collecteur DN2000 Fossé est en pied de plateforme Rétention pluie 100 ans de la surface active supplémentaire générée par le projet soit 0,20 ha avec V100 ≈ 210 m³ dans collecteur DN2000		Création d'un fossé en crête du talus Est de la Virgule reprenant les eaux de ruissellement du bassin BVOH2 et du champ INRA BV2 avec buse de raccordement sur le fossé ouest de la Grande Ceinture.
	Q fuite régu	ılé ≈ 0,45 l/s	
Débits résultants vers le fossé ouest de la Grande Ceinture (concentré en un point de rejet) :	La capacité de stockage des bassins enterrés (environ 630 m3) permet de stocker :		Débits résultants vers le fossé ouest de la Grande Ceinture (concentré en un point de rejet) :
	V20 de l'ensemb	es pluvieux V10 et ble de la surface n versant de la na actif)	
	100 % de l'épisode pluvieux V100 de la surface active supplémentaire générée par la virgule (soit 0,42 ha actif)		
	V100 de la surfac au droit de la virg de 0,55 ha act	répisode pluvieux de active existante ule (surface active uellement reprise de Grande Ceinture)	

89/127

Débits résultants vers le fossé ouest de la Grande Ceinture (concentré en un point de rejet) :	Débits résultants de la surface active agricole existante vers le fossé ouest de la Grande Ceinture :	Débits résultants vers le fossé ouest de la Grande Ceinture (concentré en un point de rejet) :
Q10 exi ≈ 0,49 m³/s Q100 exi ≈ 1,05 m³/s	Q10 ≈ 0 (stocké) Q20 ≈ 0 (stocké) Q50 ≈ 33 % de Q50 existant (77 % du volume V50 stocké) Q100 ≈ 58 % de Q100 existant (42 % du volume V100 stocké), soit environ 0,6 x 0,24m³/s ≈ 0,14 m³/s	Q10 exi ≈ 0,33 m ³ /s Q100 exi ≈ 0,70 m ³ /s

Ainsi Les bassins DN2000 enterrés permettent de stocker :

- 100 % des épisodes pluvieux V10 et V20 de l'ensemble de la surface active du bassin versant de la virgule,
- 100 % de l'épisode pluvieux V100 de la surface active supplémentaire générée par la virgule et environ 40 % de l'épisode pluvieux V100 de la surface active agricole existante au droit de la virgule,

En conséquence l'emprise projetée au droit de la Virgule Saint-Cyr génère globalement moins de ruissellement vers la Grande Ceinture que la même emprise agricole existante (stockage de 40 % du volume V100 généré actuellement par le champ).

Les eaux de ruissellements des bassins versants naturels sont quant à elles collectées en crêtes des talus de la virgule via des fossés étanchés raccordés en aval vers le fossé de la GCO exutoire actuel de ces eaux de ruissellement donc a priori sans génération de débit supplémentaire.

Tangentielle Ouest (TGO) Phase 1

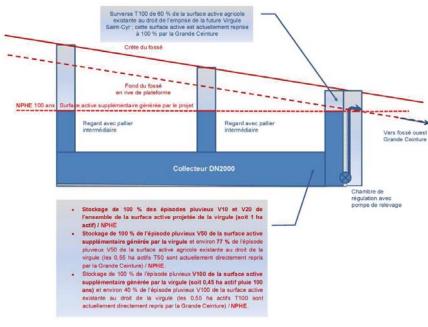


Illustration du Schéma de fonctionnement des bassins DN2000 Virgule Saint-Cyr

91/127

NOTE ASSAI NOTE TECHN

2.3 BILAN IMPERMEABILISATION AVANT/APRES

2.3.1 Périmètre Saint-Germain-en-Laye (SP1)

En section urbaine de Saint-Germain-en-Laye, le couloir de correspondance, en souterrain n'est pas de nature à induire une augmentation des surfaces imperméabilisées en surface. En section urbaine, à Saint-Germain-en-Laye, les bassins interceptés se limitent aux emprises même du projet, soit environ 5,6 ha constitués par les surfaces de voirie, plateforme, trottoir ou accotement synthétisées dans le tableau ci-dessous :

Séquence	Bassin versant existant	Elargissement pour le Projet et évolution du niveau d'imperméabilisation par rapport à l'existant	Total Bassin versant du projet
RN184	0,3 ha de voirie inchangée en termes d'imperméabilisation	+ 0,7 ha (plateforme + voie verte) à C ≈ 0,8 contre C = 0,3 sur la lisière forestière Est soit 0,7 ha x (0,8-0,3) ≈ 0,35 ha actif supplémentaire	1 ha (0,85 ha actif collecté/stocké alors que seulement 0,3 ha est repris par les fossés existants de la RN184)
Avenue Kennedy	1,4 ha de voirie/trottoir inchangé en termes d'imperméabilisation	+ 0,8 ha (plateforme + accotement sud) à C ≈ 0,7 contre C = 0,3 sur la lisière forestière sud et la bande d'acquisition nord sur le Camp des Loges soit 0,8 ha x (0,7 − 0,3) ≈ 0,35 ha actif supplémentaire	2,2 ha (1,5 ha actif collecté/stocké alors que rien n'est stocké à l'existant)
Rive Est RD284	1,2 ha de contre-allée Est actuellement dans l'emprise du projet	1,2 ha de projet dans l'emprise actuelle de la contre-allée Est + 1,2 ha d'élargissement sur la lisière forestière Soit 2,4 ha de <i>plateforme</i> + fossé + chemin à C ≈ 0,5 moyen en lieu et place de la contre-allée Est sur 1,2 ha à C = 0,3 et de la lisière forestière sur 1,2 ha à C = 0,3 soit 2,4 ha x (0,5-0,3) ≈ 0,50 ha actif supplémentaire	2,4 ha (1,2 ha actif collecté/stocké alors que rien n'est stocké à l'existant)
Total	2,9 ha	+ 2,7 ha d'élargissement (dont 2,3 ha de défrichement en lisière de forêt) soit ≈ + 1,2 ha actif supplémentaire	5,6 ha (3,5 ha actif collecté/stocké dont 3,2 ha de stockage supplémentaire par rapport à l'existant)

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

Le projet engendre une augmentation de la surface de bassin versant drainé de 2,7 ha environ correspondant à une surface active équivalente supplémentaire d'environ 1,2 ha actif.

Les surfaces soumises à une imperméabilisation supplémentaire sur le périmètre de Saint-Germain-en-Laye correspondent principalement aux emprises de la plateforme et des voies vertes + accotement.

Sur l'axe RN 184, l'insertion de la plateforme + voie verte représente une augmentation de la surface drainée de 0,7 ha environ sur l'ensemble du tracé à l'exception des traversées de voirie existantes déjà imperméabilisées, ce qui correspond à une surface active équivalente supplémentaire d'environ 0,35 ha actif.

Sur l'axe Kennedy, les emprises de plateforme et de trottoir en rive sud de l'avenue induisent une augmentation de la surface drainée de 0,8 ha environ, ce qui correspond à une surface active équivalente supplémentaire d'environ **0.35 ha actif**.

Au niveau de la séquence plus minérale le long du Complexe sportif, le niveau d'imperméabilisation de la voirie projetée est sensiblement équivalent à celui de la voirie existante déjà fortement imperméabilisée (chaussée et trottoirs en enrobés).

Sur la RD284, l'ensemble de la plateforme s'insère sur une emprise faiblement imperméabilisée en partie sur la contre-allée existante (1,2 ha) et en partie sur la lisière de forêt (1,2 ha) ce qui génère une surface active équivalente supplémentaire d'environ **0,5 ha actif.**

L'aménagement de près de 1800 ml de plateforme en végétalisation sur longrine plus perméable qu'une plateforme classique sur structure béton a permis de réduire le coefficient de ruissellement de l'aménagement futur et donc de réduire l'écart par rapport au coefficient de ruissellement existant pour tous les élargissements en lisière de forêt. C'est pourquoi les 2,7 ha de surfaces supplémentaires drainées par le projet ne génèrent qu'une surface active supplémentaire de 1,2 ha.

En conclusion, le projet améliore la situation actuelle puisque à défaut d'autre exutoire que l'infiltration, il stocke plus que le volume V10 ans résultant de la surface active supplémentaire en collectant/stockant :

- 100 % des eaux de ruissellement de la plateforme + voie verte en rive de la RN184,
- 100 % des eaux de ruissellement de la plateforme + accotement sud sur l'avenue Kennedy ainsi que 100 % des eaux de ruissellement des 200 premiers ml et 300 derniers ml de l'avenue actuellement rejetées vers la lisière forestière sud,
- 100 % des eaux de ruissellement de la plateforme + cheminement piétons en rive de la RD284,

soit une réduction d'imperméabilisation de 3,2 ha actif équivalent collecté/stocké - 1,2 ha actif équivalent généré effectivement par le projet \approx 2 ha actif équivalent en moins.

Ainsi, on stocke/infiltre de fait :

- les eaux de ruissellement de la lisière forestière acquise en rive de la RN184 : 0,7 ha x 0,3 = 0,21 ha actif,
- les eaux de ruissellement de la lisière forestière acquise en rive de l'avenue Kennedy: 0,8 ha x 0,3
 = 0.24 ha actif.
- 50 % de l'avenue Kennedy ainsi que le trottoir sud des 500 ml actuellement minéralisés : 0,85 ha x 0.95 = 0.8 ha actif.
- les eaux de ruissellement de la contre-allée Est occupée par le tracé : 1,2 ha x 0,3 = 0,36 ha actif,

93/127

• les eaux de ruissellement de la lisière forestière acquise en rive de la RD284 : 1,2 ha x 0,3 = 0,36 ha

soit un total équivalent de **2 ha actif existant** qui ruisselle aujourd'hui directement vers le milieu naturel et qui dans le cadre du projet est stocké/infiltré à 1l/s/ha T10 ans.

2.3.2 Périmètre Virgule Saint-Cyr (SP2)

Au niveau de la Virgule Saint-Cyr, le projet génère dans l'emprise même de la virgule, une surface active supplémentaire d'environ 0,42 ha reprise à 100 % par stockage T100 ans à 1l/s/ha et surverse T100 ans de 60 % du volume généré actuellement par la surface active agricole située au droit de la virgule. En conséquence l'emprise projetée au droit de la Virgule Saint-Cyr génère globalement moins de ruissellement vers la Grande Ceinture que la même emprise agricole existante (stockage de 40 % du volume V100 généré actuellement par cette partie du champ).

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

3. ASSAINISSEMENT DES EQUIPEMENTS D'EXPLOITATION

3.1 Equipements d'exploitation perimetre Saint-Germain-en-Laye (SP1)

Les sous-stations et locaux d'exploitation sont astreints aux mêmes contraintes de rétention sur la base d'un coefficient de ruissellement C = 0,95. Compte tenu de l'absence d'exutoire, ces locaux devront être dotés de tranchée ou puits de rétention/infiltration en périphérie du bâtiment :

- · Sous-station Avenue Kennedy:
- surface de 120 m² à C = 0,95
- V10 ans 1l/s/ha ≈ 5 m³
- Sous-station + local SIG Avenue des Loges / Piscine Olympique :
- surface de 160 m² à C = 0,95
- V10 ans $1l/s/ha \approx 7 \text{ m}^3$
- Local Exploitation terminus RER A:
- surface de 40 m² à C = 0.95
- V10 ans 1l/s/ha ≈ 2 m³
- Bâtiment de maintenance des équipements fixes :
- surface de 1000 m² à C = 0.95
- V10 ans 1l/s/ha ≈ 43 m³

3.2 EQUIPEMENTS D'EXPLOITATION PERIMETRE VIRGULE SAINT-CYR (SP2)

Le même principe est à envisager pour le Local d'Exploitation + local SIG du terminus de Saint-Cyr :

- surface de 70 m² à C = 0.95
- V10 ans 1l/s/ha ≈ 3 m³

4. ANNEXE DES NOTES DE CALCULS

4.1 NOTES DE CALCUL PERIMETRE SAINT-GERMAIN-EN-LAYE (SP1)

4.1.1 Estimation des volumes de rétention par sous-bassins versants / dimensionnement des tranchées de rétention/infiltration

Nota: les surfaces des bassins versants sont également reportées sur les plans d'assainissement, la ligne « Total surface indicative BV Plan assainissement » y fait référence.

4.1.2 RN184 – Plateforme au débranchement du RFN

												Estimation	Estimation Contrôle ordre	
												méthode	de grandeur	
										Débit de		des pluies	des pluies DRIEA pluie	
									Surface	fuite		recherche V	recherche V 10 ans 1l/s/ha	
				Plateforme	Plateforme			Noue	active	admissible	Estimation	BR max	active admissible Estimation BR max (pluie de 24 h)	Volume
	Trottoir	Voirie	TPC	végétalisée	végétalisée béton Trottoir	Trottoir	Trottoir	végétalisée en résultante résultant of approche (25 mn≤t 450 m3/ha	résultante	résultant qf	approche	(25 mn≤ t	450 m3/ha	moyen V10
Plateforme au débranchement du RFN	enrobé	enrobé	enherbé	enherbé sur longrine engazonnée	engazonnée	enrobé	enrobé stabilisé	lisière	Sa (ha)	(Vs)	SEVESC <1440 mn)	≤1440 mn)	actif	retenu (m3)
Coefficient ruissellement (*)	0,95	0,95	0,25	9'0	96'0	96'0	9'0	0,35						
Largeur			-		8,5		9							
Longueur			20		20		20							
Surface (m2)			20	0	595	0	210	0	70,0	70'0	31	42	32	35
Total surface indicative BV Plan assainissement	861	861 m2												
Total surface indicative BV déduite section courante	875	875 m2	ð											

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

4.1.3 RN184 - Plateforme en sortie du carrefour Lisière Pereire

				ā	i			-	Surface			Estimation méthode des pluies recherche V	Estimation Contrôle ordre méthode de grandeur des pluies DRIEA pluie echerche V 10 ans 1/8/ha	į
KN184 / Plate forme en sortie du carretour Lisiere Pereire + voie verte (modification AVP VA	Trottoir	Voirie	Ē	Platerorme	Platerorme	Trottoir	Tmtoir	Noue vérrétalisée en	active	active admissible Estimation	Estimation	(25 mns t	(plule de 24 n) 450 m3/ha	volume
Tranchée de rétention sous surlargeur	enrobé			_	ée			lisière	Sa (ha)	(l/s)		≤1440 mn)		retenu (m3)
Coefficient ruis sellement (*)	0,95	0,95	0,25	9'0	0,95	0,95	9'0	0,35						
Largeur			2		7,5	4								
Longueur			120		120	120								
Surface (m2)			240		006	480	0	0	0,14	0,14	09	54	62	59
Total surface indicative BV Plan assainissement	1674 m2	m2												
Total surface indicative BV déduite section courante	1620 m2	m2 (×											
												Estimation	Estimation Contrôle ordre	
												méthode	de grandeur	
									9	Débit de		des pluies	des pluies DRIEA pluie	
				Distoformo					Surface	Ture	Cotionotion	recnerche v	echerche v 10 ans 17s/na	Volumo
PN194 / reprise basein versant demi-chanses a PN194 Fet via	Trottoir	Voirio	Ę.		Plateforme Trottoir Trottoir	Trottoir	Tmttoir		récultante	écultante résultant of approche	annuche		(plule de 24 II) 450 m3/ha	woven V10
Fossé	enrobé			sur longrine	minéral	enrobé	stabilisé	Fossé latéral	Sa (ha)	(s/I)	SEVESC	s1440 mn)	actif	retenu (m3)
Coefficient ruissellement (*)	0,95	0,95	0,25	9'0	0,95	0,95	9'0	2'0						
Largeur		Ī												
Longueur														
Surface en sulargeur de la section courante (m2)		1074												
Surface (m2)	0	1074	0	0	0	0	0	0	0,10	0,10	44	09	46	20
Total surface indicative BV Plan assainissement	1074 m2	m2												
Total surface indicative RV décluite section courante	1074 m2		č											

	ומייד אסוכ אכונים		5	
Stockage par tranchée de rétention :				
Hauteur utile NPHE 10 ans sous exutoire drain plateforme ou BA chaussée =	2 m	2	٤	
Largeur utile =	T E	_	٤	
= Progress risks	120 m	120 m	E	
porosité =	0,3	0,3		
= eleute longitudinale =	0,005 m/m	0,005 m/m	m/m	
Volume stocké =	62 m3	62	62 m3	
Volume à stocker =	59 m3	20	m3	
Réserve volume de stockage au dessus du NPHE 10 ans (*) =	36 m3	36	36 m3	
Volume supplémentaire à stocker T20 (0,25xV10) =	15 m3	13	13 m3	
Volume supplémentaire à stocker T50 (0,6xV10) =	35 m3	30	30 m3	
Vérification du débit de fuite de la tranchée de rétention :				
vitesse =	vitesse = $0,000001 \text{ m}3/\text{m}2/\text{s}$		0,000001 m3/m2/s	
Surface d'infiltration nécessaire calée sur qf =	137 m2	102	102 m2	
Surface des parois non étanchées à - 1,5 m sous le TN Sp =	480 m2	480	480 m2	
Surface de la base Sb =	120 m2	120	120 m2	
Test Surface efficace à 1/3(Sp+Sb) =	200 m2	200	200 m2	
Test Surface efficace à 1/3(Sp) =	160 m2	160	160 m2	ð
Test option fossé latéral RN184 (entre Lisière Pereire et RD190) :				
Surface miroir =		145	145 m2	
Profondeur =		0,8 m	Ε	
Linéaire du fossé =		09	60 ml	
Largeur moyenne du fossé =		2,4 m	٤	
volume stocké /ml =		1,0	1,0 m3/ml	
volume stocké =		28	58 m3	
Volume à stocker =		20	50 m3	
Débit d'infiltration calé sur la surface miroir =		0,145 1/s	s/I	
Débit de fuite qf (11/s/ha actif) =		0,10 1/s	s/I	
Temps de vidande actimé —		4	21101 3	

97/127

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

4.1.4 RN184 - section située au carrefour RN184/RD190

											ð	585 m2	285	Total surface indicative BV déduite section courante
												577 m2	577	Total surface indicative BV Plan assainissement
21	23	19	21	0,05	0,05	0	0	180	315	0	06			Surface (m2)
								45	45		45			Longueur
								4	7	7	2			Largeur
						0,35	9'0	96'0	96'0	9'0	0,25	0,95	0,95	Coefficient ruissellement (*)
retenu (m3	actif	≤1440 mn)	SEVESC s1440 mn)	(NS)	Sa (ha)	lisière	enrobé stabilisé	enrobé	enrobé enrobé enherbé sur longrine engazonnée	sur longrine	enherbé	enrobé	enrobé	Plateforme au droit du TPC RD190 + voie verte (AVP Vf)
moyen V10	450 m3/ha	(25 mn≤ t	approche	résultant of	résultante	végétalisée en résultante résultant qf approche (25 mn≤ t	Trottoir	Trottoir	végétalisée béton Trottoir Trottoir	végétalisée	<u> </u>	Trottoir Voirie	Trottoir	
Volume	active admissible Estimation BR max (pluie de 24 h)	BR max	Estimation	admissible	active	Noue			Plateforme Plateforme	Plateforme				
	/ 10 ans 11/s/ha	recherche V		fuite	Surface									
	des pluies DRIEA pluie	des pluies		Débit de										
	de grandeur	méthode												
	Estimation Contrôle ordre	Estimation												

	Plat.+voie verte	
Stockage par tranchée de rétention :		
Hauteur utile NPHE 10 ans sous exutoire drain plateforme =	2 m	
= Pargeur utile =	т Е	
Longueur utile =	45 m	
= porosité =	0,3	
pente longitudinale =	0,005 m/m	
Volume stocké =	26 m3	
Volume à stocker =	21 m3	
Réserve volume de stockage au dessus du NPHE 10 ans (*) =	14 m3	
Volume supplémentaire à stocker T20 (0,25xV10) =	5 m3	
Volume supplémentaire à stocker T50 (0,6xV10) =	13 m3	
(*) sur la base de 0,3m3/m /		
Vérification du débit de fuite de la tranchée de rétention :		
vitesse = 0	0,000001 m3/m2/s	
Surface d'infiltration nécessaire calée sur qf =	49 m2	
Surface des parois non étanchées à - 1,5 m sous le TN Sp =	180 m2	
Surface de la base Sb =	45 m2	
Test Surface efficace à 1/3(Sp+Sb) =	75 m2	
Test Surface efficace à 1/3(Sp) =	60 m2	ð

4.1.5 RN184 – section comprise entre la RD190 et l'avenue Kennedy

												Estimation		
										Débit de		méthode des pluies	méthode de grandeur des pluies DRIEA pluie	
									Surface	fuite				
				Plateforme	Plateforme			Noue	active	admissible	Estimation	BR max	(pluie de 24 h)	Volume
RN184 / Plateforme + Voie verte	Trottoir	Voirie	TPC	végétalisée	béton	Trottoir	Trottoir	végétalis ée en	rés ultante	résultante résultant of approche	approche	(25 mns t	450 m3/ha	moyen V 10
Tranchée de rétention sous voie verte	enrobé	enrobé	enherbé	sur longrine	en gaz onné e	enrobé	stabilisé	lisière	Sa (ha)	(s/I)	SEVESC	≤1440 mn)	actif	retenu (m3)
Coefficient ruissellement (*)	0,95	0,95	0,25	9'0	0,95	0,95	9'0	0,35						
Largeur			1		7	4	2							
Longueur			250		250	250	250							
Surface en sulargeur de la section courante (m2)			160											
Surface (m2)			410	0	1750	1000	200	0	0,30	06,0	131	179	136	149
Total surface indicative BV Plan assainissement														
(3050m2+611m2)	3661 m2	m2												
Total surface indicative BV déduite section courante	3660 m2		ŏ											
												Estimation	Estimation Contrôle ordre	
												méthode	de grandeur	
										Debit de		des pluies	DRIEA pluie	
				Plateforme				δ.	Surface	Tulte admissible	Fstimation	RR max	BR max (nline de 24 h)	Volume
RN184 / reprise bassin versant demi-chaussée RN184 Est via	Trottoir	Voirie	TPC	végétalisée	Plateforme	Trottoir	Trottoir	végétalis ée en	rés ultante	résultante résultant of	approche		450 m3/ha	moyen V10
tranchée de rétention étanchée	enrobé	enrobé	enherbé	sur longrine	minéral	enrobé	stabilisé	lisière	Sa (ha)	(s/I)	SEVESC	≤1440 mn)	actif	retenu (m3)
Coefficient ruissellement (*)	0,95	0,95	0,25	9'0	0,95	0,95	9'0	0,35						
Largeur		7												
Longueur		220												
Surface en sulargeur de la section courante (m2)		477												
Surface (m2)	0	2017	0	0	0	0	0	0	0,19	0,19	83	169	87	113
Total surface indicative BV Plan assainissement														
(1702m2 + entrée Kennedy 317m2)	2019 m2	m2												
Total surface indicative BV déduite section courante	2017 m2		ŏ											

99/127

Tangentielle Ouest (TGO) Phase 1 NOTE ASSAINISSEMENT NOTE TECHNIQUE

884						m/r		13 262 m3	13 120 m3					13/m2/s	12 493 m2	12	12	12	12 533 m2	stant de l'ordre de 500 m2	ent RN184			12	12	12	12 603 m2 de surface utile d'infiltration globale	n3 288 m3 de volume global de stockage	262 m3	288 m3 Ok	54 m3 sur la base d'une surface de 120 m2 sur 1,50 m à n = 0,3	120 m3 au droit des tranchées Plateforme+voie verte et BV RN184	174 m3	65 m3	157 m3
Plat.+voie verte BV RN184		2 m 2 m	1 m	F	0,3	0,005 m/m 0,005 m/m		149 m3 113 m3	60 m3 60 m3	37 m3 28 m3	89 m3 68 m3			vitesse = 0,000001 m3/m2/s 0,000001 m3/m2/s	302 m2 192 m2	800 m2 800 m2		333 m2 333 m2	267 m2 267 m2	correspond à la surface miroir du fossé existant de l'ordre de 500 m2	ommun à Voie Verte et Accoteme	3	m 02	210 m2	120 m2	110 m2	70 m2	108 m3							
	Stockage par tranchée de rétention :	Hauteur utile NPHE 10 ans sous exutoire drain plateforme ou BA chaussée =	Largeur utile =	Fongueur utile	= porosité =	pente longitudinale =	Volume stocké =	Volume à stocker =	Réserve volume de stockage au dessus du NPHE 10 ans (*) =	Volume supplémentaire à stocker T20 (0,25xV10) =	Volume supplémentaire à stocker T50 (0,6xV10) =	(") sur la base de 0,3m3/m1	Vérification du débit de fuite de la tranchée de rétention :	vitesse = 0,	Surface d'infiltration nécessaire calée sur qf =	Surface des parois non étanchées à - 1,5 m sous le TN Sp =	Surface de la base Sb =	Test Surface efficace à 1/3(Sp+Sb) =	Test Surface efficace à 1/3(Sp) =	correspo	Puits d'infiltration complémentaire à l'exutoire (stockage et infiltration) : commun à Voie Verte et Accolement RN184	= Hauteur sous exutoire	Périmètre utile =	Surface parois Sp =	Surface de la base Sb =	Test Surface efficace à 1/3(Sp+Sb) =	Test Surface efficace à 1/3(Sp) =	Volume stocké supplémentaire =	Total Volume à stocker =	Volume stocké =	Réserve volume de stockage au dessus du NPHE 10 ans puits (*) =	Réserve volume de stockage au dessus du NPHE 10 ans tranchées (*) =	Total réserve volume =	Volume supplémentaire à stocker T20 (0,25xV10) =	Volume supplémentaire à stocker T50 (0,6xV10) =

100/127

4.1.6 Exemple fiche d'évaluation des volumes par l'approche BVRmax - BV Plateforme + voie verte

Control Cont	1,125 1,000 1,0	Coefficiental appoint		Dae de ten	900		
Part Color Color	Part -0,7165			=dt=	36,00	uu	
The control of the	The course	e la pluie		maxi	440,00	uu	
State Color Colo	Marches base 100 1						
	Colored Particle Colored Par	elin		ĺ			
Expension Part Pa	Elganeous Verse		m3/s	Vfdt=	0,65	m3	
No. 10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10		1	1	Ī	740	
March Marc	Comparison Com		Coéficient	emporel=		1/3	
H May	Harmon Market Harmon Marke		Volume ré	adubass	,i	179	m3
March Marc	May of the part	9		51	_	19	
10 10 10 10 10 10 10 10	1 1 1 1 1 1 1 1 1 1	ш	Vfcum	Vst	of dt	م ا	۸ų
20 20 20 20 20 20 20 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+	III3/at	2	III3/ at	113/11	
32 119 96 960 1 96 1 96 1 96 1 96 1 1 96 1 <t< td=""><td>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		0	0	0	0	0
1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-	-	98	-	-	0
Column C	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		-	100			
A	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		2	118			7
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		9 6	120	-		7 6
144	6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		0 4	135	-		2 6
147 4 6 7 6 6 7 7 7 7 7 7	14 15 15 15 15 15 15 15		40	139			4
5 16 16 16 16 17 18 18 18 18 18 18 18	55 (55 (55 (55 (55 (55 (55 (55 (55 (55	7	2	142	-	-	40
State Stat	15-1 15-2	4	9	145	-	-	40
10 10 10 10 10 10 10 10	6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3	7	147	-	-	9
S S S S S S S S S S	6 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3	7	150	-	-	7
Second Color	5.6 (1992) 1.0 (1	3	80	152	-	-	_
Second S	9 9 1777 1778 1779	4	00	154	-		ω .
Column C	777 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 0	00 0	156			55 6
1777 2 2 17 17 17 17 17	99 1772 1772	1 0	2 0	150	-		20 0
17 2 3 17 17 17 17 17 17 17	777 500 778 778 778 778 778 778 778 7	4	1.	181	-		1
177 2 3 12 164 1 1 1 1 1 1 1 1 1	1778 1778	3	12	162			=
99 1779 2 9 14 1 164 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	777 500 778 778 778 778 778 778 778 7	2	12	163	٦	-	12
90 1779 2 3 14 1766 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 17 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3	13	164	-	-	13
18 18 2 3 14 16 18 18 18 18 18 18 18	60 188 189 189 189 189 189 189 189 189 189		14	166	-	-	13
61 (88 2 3 16 (89 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	61 188 189 189 189 189 189 189 189 189 18		14	167	-	-	14
Columbia Columbia	611 1864 1864 1864 1864 1864 1864 1864 1		15	168	-	-	16
C C C C C C C C C C	202 Lo		16	169	-	-	10
C C C C C C C C C C	(5) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		16	170			16
C C C C C C C C C C C C C C C C C C C	1002 L/9 1002 L/9 1002 L/9 1002 L/9 1003 L/9 1004 L/9 1005 L/9 1005 L/9 1006 L/9 1007 L/9 100		17	170	-		10
6 6 8 6 8 9 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	641 1932 644 1944 644 1945 644 1945 645 645 645 645 645 645 645 645 645 6		18	168			1
6 6 9 6 9 6 9 6 9 7 7 7 7 7 7 7 7 9 9 9 9	4 4 4 8 8 8 8 8 8 7 7 7 9 7 7 9 7 7 9 1 1 1 1 1 1 1 1 1 1		18	1/2			2
6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	66 68 68 67 77 67 67 67 67 67 67 67 67 67 67 67		2 5	17.0	-		01
10 10 10 10 10 10 10 10	88 88 88 88 88 88 88 88 88 88 88 88 88	7 0	200	474	-		200
6 6 197 1 2 2 2 1 177 1 1 1 1 1 1 1 1 1 1 1 1	88 88 88 79	10	24	175			200
198 1	99 99 67 67	- 2	21	175	-	-	21
66 200 1 2 22 170 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	96 67 67	1	22	176	-	-	22
68 200 1 2 23 177 1 1 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	79 75	1	23	176	-	-	22
67 202 1 2 24 177 1 1 67 202 1 2 25 178 1 1 68 204 1 2 25 178 1 1	67	1 2	23	177	-	-	23
67 202 1 2 25 178 1 1 68 204 1 2 25 178 1 1	. 67	1	24	177	-	-	24
68 204 1 2 25 178 1	-	1	52	178	-	-	24
	89	1	25	178			52

101/127

NOTE ASSAINISSEMENT NOTE TECHNIQUE

Tangentielle Ouest (TGO) Phase 1

4.1.7 Avenue Kennedy - Noues N01, N02, N03, N04

										Débit de		Estimation méthode des pluies	Estimation Contrôle ordre méthode de grandeur des pluies DRIEA pluie	
Avenue Kennedy - tranchée de rétention noue 1	Trottoir	Voirie	JPC	Plateforme vénétalisée sur Plateforme	Plateforme	Trottoir	Ho For	Noue	Surface active	Noue active admissible Estimation venéralisée résultante résultant de la annroche	Estimation		BR max (pluie de 24 h)	Volume
Plateforme + accotement sud + noue	enrobé	enrobé	enherbé	longrine	minéral	enrobé		en lisière	Sa (ha)	(s/I)	SEVESC			retenu (m3)
Coefficient ruissellement (*)	0,95	0,95	0,25	9'0	0,95	0,95	9'0	0,35						
Largeur			-	7	0	33		2						
Longueur			92	92	0	92		32						
Surface (m2)			98	999	0	285	0	190	9/0'0	9/0'0	33	45	35	38
Total surface indicative BV N01 Plan assainisse ment (964m2+282m2)	1246	246 m2												
Total surface indicative BV N01 déduite section courante	1235	235 m2	ð											
												Estimation	Estimation Contrôle ordre	
										Débit de		méthode	méthode de grandeur	
									Surface	fuite			echerche V 10 ans 1//s/ha	
Avenue Kennedy - tranchée de réfention noue 2	Trottoir	Ē	TPC	Plateforme	Plateforme	Trottoir	Tmtoir	Noue active admissible	active	admissible résultant of	Estimation	BR max	(pluie de 24 h) 450 m3/ha	Volume
Plateforme + accotement sud + noue	enrobé	enrobé	enherbé	longrine	minéral	enrobé	stabilisé	en lisière	Sa (ha)	(l/s)	SEVESC			retenu (m3)
Coefficient ruissellement (*)	0,95	0,95	0,25	9'0	0,95	0,95	9'0	0,35						
Largeur		1	1	7	7	3,5								
Longueur		100	92	65	100	165								
Surface en sulargeur de la section courante (m2)			20											
Surface totale (m2)	0	100	135	455	200	577,5	0	0	0,16	0,16	70	96	73	80
Total surface indicative BV N02 Plan assainissement (866m2±1229m2)	2055	2055 m2												
Total authors in displice BV MOS					Ī									I
déduite section courante	1968	968 m2	ŏ											
														Ī

Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

900									Estimation	Estimation Contrôle ordre	
Trortoir TPC	Plateforme				en ov	Surface	Débit de fuite admissible	Estimation	des pluies recherche V BR max	des pluies DRIEA pluie echerche V 10 ans 11/s/ha BR max (pluie de 24 h)	Volume
10.95 0.75	végétalisée sur Plateforme		Trottoir T	Trottoir vé	végétalisée re	ésultante	ésultante résultant of	approche		450 m3/ha	moyen V10
4359 m2 0.85 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2		minéral el	enrobé st	stabilis é e	en lisière	Sa (ha)	(s/l)	SEVESC	≤1440 mn)	actif	retenu (m3)
1 1.5 250 25	H	0,95	0,95	9'0	0,35						
310 280	7	7	3	8	2						
310 390 4359 m2 390 390 4359 m2 0k 10 10 10 10 10 10 10		20	20	260	260						
4.359 m2 Ok 4.320 m2 Ok Troutoir Voirie TPC emobé emberbé emberbé 0,35 0,35 0,25 1 1			150	780	520	0,26	0,26	114	155	118	129
4320 m2 Ok Trottoir Voirie TPC emobé emobé emobé emobé 0,35 0,25 0,25 1.											
Troutoir Voirie TPC - emobile eministe emobile emobile - 0.35 - 0.35 - 0.25 - 1											
Trottoir Voirie TPC - enherbe 6 0.85 0.25 0.25											
Trottoir Voirie TPC - enherbe 6 0.85 0.25 0.25											
Trottoir Voirie TPC - enhense 6.0.35 0.25 0.25									Estimation	Estimation Contrôle ordre	
Trottor Voirie TPC - enrobé enhethé 0,55 0,55 0,25 1.25									méthode	de grandeur	
Trottoir Voirie TPC - embéré enherbé enherbé (0.25 0.25 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7						Surface	Debit de fuite		des pluies recherche V	des pluies DRIEA pluie echerche V 10 ans 11/s/ha	
0,95 0,95 0,25	Plateforme		F	Teathole	Noue	active	active admissible	Estimation	BR max		Volume
0,95 0,25	longrine mi		0,			Sa (ha)	(l/s)	SEVESC	51440 mn)		retenu (m3)
	t	╀	t	_	0,35	(i)	/				
				3	2						
95 95	92			92	92						
Surface en sulargeur de la section courante (m2)				06							
Surface totale (m2) 0 0 95 665	999	0	0	375	190	0,07	0,07	31	42	33	35
4											
Plan assainissement (1324m2) 1324 m2											
3V N04											
déduite section courante 1325 m2 Ok											

103/127

Tangentielle Ouest (TGO) Phase 1

		Noue N01	Noue N02	Noue N03	None N04
Stockage par tranchée de rétention :					
Hauteur utile NPHE 10 ans sous exutoire drain plateforme =	oire drain plateforme =	2 m	3 m	2 m	2 m
	Largeur utile =	T L	1,3 m	1,3 m	£
	Longueur utile =	75 m	m 06	260 m	m 06
	Profondeur / pente =	400 m	m 009	400 m	400 m
	porosité =	0,3	0,3	0,3	0,3
	pente longitudinale =	0,005 m/m	0,005 m/m	0,005 m/m	0,005 m/m
	Volume stocké =	41 m3	98 m3	137 m3	48 m3
	Volume à stocker =	38 m3	80 m3	129 m3	35 m3
Réserve volume de stockage au dessus du NPHE 10 ans (*) =	du NPHE 10 ans (*) =	23 m3	27 m3	78 m3	27 m3
Volume supplémentaire à stocker T20 (0,25xV10) =	cker T20 (0,25xV10) =	9 m3	20 m3	32 m3	9 m3
Volume supplémentaire à stocker T50 (0,6xV10) =	ocker T50 (0,6xV10) =	23 m3	48 m3	77 m3	21 m3
(*) sur la base de 0,3m3/ml					
Vérification du débit de fuite de la tranchée de rétention	étention :	Noue N01	Noue N02	Noue N03	Noue N04
	witesse =	0,000001 m3/m2/s	0,000001 m3/m2/s	0,000001 m3/m2/s	0,000001 m3/m2/s
Surface d'infiltration nécessaire calée sur qf =	sessaire calée sur qf =	76 m2	162 m2	261 m2	71 m2
Surface des parois	Surface des parois non étanchées Sp =	300 m2	540 m2	1040 m2	360 m2
nS	Surface de la base Sb =	75 m2	117 m2	338 m2	90 m2
Test Surface ef	Test Surface efficace à 1/3(Sp+Sb) =	125 m2	219 m2	459 m2	150 m2
Test Surfac	Test Surface efficace à 1/3(Sp) =	100 m2	180 m2	347 m2	120 m2
Profondeur complémentaire tranchées pour reprise des Qf BR voirie	ise des Qf BR voirie :				
	witesse =	0,000001 m3/m2/s	0,000001 m3/m2/s	0,000001 m3/m2/s	0,000001 m3/m2/s
Surface d'infiltration nécessaire calée sur qf BR voirie =	alée sur qf BR voirie =	77 m2	155 m2	240 m2	65 m2
Profondeur supplémentaire sous tranchée de rétention =	ranchée de rétention =	1 m	1 m	T =	T E
	Largeur utile =	T L	1 m	т Е	- E
	Longueur utile =	75 m	m 06	260 m	m 06
Surface des parois	Surface des parois non étanchées Sp =	150 m2	180 m2	520 m2	180 m2
Test Surfac	Test Surface efficace à 1/3(Sp) =	50 m2	60 m2	173 m2	60 m2

Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

4.1.8 Avenue Kennedy - Bassins de rétention DN2000 EP voirie BR01, BR02, BR05, BR06, BR07

									Surface	Débit de fuite		Estimation méthode des pluies recherche V	Estimation Contrôle ordre méthode de grandeur des pluies DRIEA pluie echerche V 10 ans 11/s/ha	
Avenue Kennedy - Bassin de rétention voirie 1 Trottoir nord + chaussée / mise en conformité	Trottoir	Voirie	TPC	Plateforme vécétalisée sur Plateforme	Plateforme	Trottoir	Trottoir	Noue vécétalisée	active	Noue active admissible vécétalisée résultant of	Estimation	BR max (25 mns t	(pluie de 24 h) 450 m3/ha	Volume moven V10
existant	enrobé	enrobé	enherbé	longrine	minéral	enrobé	stabilisé	en lisière	Sa (ha)	(s/I)	SEVESC	≤1440 mn)		retenu (m3)
Coefficient ruis sellement (*)	0,95	0,95	0,25	9'0	0,95	96'0	9'0	0,35						
Largeur	2,3	4,75												
Longueur	92	92												
Surface en sulargeur de la section courante (m2)		140												
Surface (m2)	219	591	0	0	0	0	0	0	0,08	0,08	33	46	35	38
Total surface indicative BR01 Plan assainissement (551m2+181m2)	738 m2	m2												
Total surface indicative BR01 déduite section courante	810	810 m2	ð											
									Surgice	Débit de fuite		Estimation méthode des pluies	Estimation Contrôle order méthode de grandeur des pluies DRIEA pluie acherche V 10 ans 11/s/ha	
Avenue Kennedy - Bassin de rétention voirie 2				Plateforme				Noue	active		Estimation	BRmax		Volume
Trottoir nord + chaussée / mise en conformité	Trottoir	Voirie	<u>ا</u>	végétalisée sur Plateforme	Plateforme	Trottoir	Trottoir	végétalisée	résultante	résultante résultant qf	approche	(25 mns t	450 m3/ha	moyen V10
Coefficient ruis sellement (*)	0,95	0,95	0,25	9.0	0,95	0,95	0,6	0,35	oa (IIa)	(6/1)	35,550	1	acii	ופופוות (וווס)
Largeur	2	4,75												
Tongueur	177	177												
Surface en sulargeur de la section courante (m2)	300	140												
Surface totale (m2)	654	980,75	0	0	0	0	0	0	0,16	0,16	89	92	20	77
Total surface indicative BR02	1609	m												
riali assallisse literit (4551112+11501112)	6001	7111												
Total surface Indicative BR02 déduite section courante	1635 m2		ŏ											

105/127

Tangentielle Ouest (TGO) Phase 1

										Déhit de		Estimation méthode	Estimation Contrôle ordre méthode de grandeur	
Avenue Kennedy - Bassin de rétention voirie BR05+BR06				Plateforme				Noue	Surface	fuite	Estimation	recherche V BR max	recherche V 10 ans 1Vs/ha BR max (oluie de 24 h)	Volume
Trottoir nord + chaussée / mise en conformité	Trottoir	Voirie	∄C	végétalisée sur Plateforme	Plateforme	Trottoir	Trottoir	végétalisée	rés ultante	résultante résultant qf approche	approche	(25 mns t	450 m3/ha	moyen V10
existant	enrobé	enrobé	enherbé	longrine	minéral	enrobé	stabilisé	en lisière	Sa (ha)	(s/I)	SEVESC	≤1440 mn)	actif	retenu (m3)
Coefficient ruissellement (*)	0,95	0,95	0,25	9'0	0,95	0,95	9'0	0,35						
Largeur	2,3	4,75												
Longueur	310	310												
Surface en sulargeur de la section courante (m2)		340												
Surface (m2)	713	1813	0	0	0	0	0	0	0,24	0,24	104	142	108	118
Total surface indicative BR05+BR06														
Plan a ssainissement (1316m2+1213m2)	2529 m2	m2												
Total surface indicative BR05+BR06														
déduite section courante	2526 m2	m2	ŏ											
							Ī					The section of the section of	Control of the control	
												méthode	méthode de grandeur	
										Débit de	Estimation	des pluies	Estimation des pluies DRIEA pluie	
Avenue Kennedy - Bassin de retention voirie RR07				Plateforme				gi CN	Surface	admissible Ab 7 INT77	abadne Ah 7 INT77	RR max	RR max (nhie de 24 h)	Volume
Trottoir nord + chaussée / mise en conformité	Trottoir	Voirie	TPC	végétalis ée sur Plateforme	Plateforme	Trottoir	Trottoir	végétalisée	résultante	rés ultant of	approche	(25 mns t	450 m3/ha	moven V10
existant	enrobé	enrobé	enherbé	longrine	minéral	enrobé	stabilisé	stabilisé en lisière Sa (ha) (I/s) SEVESC	Sa (ha)	(s/I)	SEVESC		actif	retenu (m3)
Coefficient ruissellement (*)	0,95	96'0	0,25	9'0	0,95	0,95	9'0	0,35						
Largeur	2,3	4,75												
Longueur	96	92												
Surface en sulargeur de la section courante (m2)		15												
Surface totale (m2)	218,5	466,25	0	0	0	0	0	0	0,07	20'0	28	38	30	32
Total surface indicative BR07														
Plan a ssaini ssement (688m2)	688 m2	m2												
Total surface indicative BR07														
déduite section courante	685 m2	m2	ŏ											

4.1.9 Avenue Kennedy – Bassins de rétention DN2000 EP plateforme + trottoir sud BR03, BR04

Volume moyen V10 retenu (m3)					106				moyen V10 retenu (m3)					102		
Estimation Contrôle ordre méthode de grandeur des pluies DRIEA pluie echerche V 10 ans 11s/ha BR max (pluie de 24 h) (25 mnst 450 mn) actif					26)	450 m3/na actif					94		
					128				(25 mns t ≤1440 mn)					123		
Estimation approche SEVESC					94			Débit de fuite admissible Estimation	approche SEVESC					06		
Débit de Surface fuite active admissible résultante résultant féutlant d'Safha) (I/s)					0,22			Débit de fuite admissible	Sa (ha) (I/s)					0,21		
Surface active résultante Sa (ha)					0,22									0,21		
Noue végétalisée en lisière	0,35		0		0				vegetalisee en lisière	0,35				0		
Trottoir stabilisé	9'0				0				stabilisé	9'0				0		
Trottoir enrobé	0,95	2	185		922				enrobé	0,95	2	150	345	1095		
Plateforme minéral	0,95		185		1295				Platerorme minéral	0,95	7	150		1050		
Plateforme Vegetalisee sur Plateforme longrine minietal	9'0				0			Plateforme	vegetalisee sur Platerorme longrine minéral	9'0				0		
TP.C enherbé	0,25	+	185		185		ŏ	f	enherbé	0,25	-	150		150		ŏ
Voirie enrobé	0,95					2343 m2	2405 m2	:	Voine	0,95				0	2213 m2	2295 m2
Trattair enrobé	0,95					2343	2405	:	Irottoir enrobé	0,95				0	2213	2295
Avenue Kennedy - Bassin rétention Plateforme - accodement sus entre accès principal Camp des Logas et Entrée Stade	Coefficient ruissellement (*)	Largeur	Longueur	Surface en sulargeur de la section courante (m2)	Surface (m2)	Total surface indicative BR03 Plan a ssa inissement (2343m2)	Total surface indicative BR03 déduite section courante	Avenue Kennedy - Bassin rétention	Plateforme + accotement sud entre Entree Stade et Complexe sportif	Coefficient ruiss ellement (*)	Largeur	Longueur	Surface en sulargeur de la section courante (m2)	Surface totale (m2)	Total surface indicative BR04 Plan assainissement (215m2+1998m2)	Total surface indicative BR04 déduite section courante

107/127

Tangentielle Ouest (TGO) Phase 1 NOTE ASSAINISSEMENT NOTE TECHNIQUE

4.1.10 Avenue Kennedy - Synthèse des bassins de rétention DN2000 eaux pluviales voirie ou plateforme+accotement

	200					
Stockage par DN 2000 enterrée pour les eaux de voirie :	BR n ^o Voirie 1	BR n2 Voirie 2	BR n3 Plateforme	BR n 4 Plateforme	BR n 5 et 6 Voirie 3	BR n7 Voirie 4
Linéaire DN 2000 =	13 ml	26 ml	25 ml	50 ml	41 ml	11 m
Pente =	0,005 m/m	0,005 m/m	0,005 m/m	0,005 m/m	0,005 m/m	0,005 m/m
Volume stocké à pleine section avale =	39 m3	78 m3	75 m3	150 m3	123 m3	33 m3
Volume V10 à stocker =	38 m3	77 m3	106 m3	102 m3	118 m3	32 m3
			sous-total	sous-total BR03+BR04	réparti au prorata en deux sous-bassins	sous-bassins
		Volume stock	Volume stocké à pleine section avale =	225 m3	27 ml	
			Volume à stocker =	209 m3 Ok	14 ml	
Surverse T20 (0,25 x V10) =	10 m3	19 m3	27 m3	26 m3	30 m3	8 m3
Surverse T50 (0,6 x V10) =	23 m3	46 m3	64 m3	61 m3	71 m3	19 m3
Surverse 2ième épisode T10 (1 x V10) =	38 m3	77 m3	106 m3	102 m3	118 m3	32 m3
			pas d'exutoire po	ssible en tranchée		
	Noue N01	Noue N02			Noue N03	Noue N04
Approfondissement tranchée Surverse T20 (0,25 x V10) =	0,6 m	1 m			1 m	0,5 m
Largeur utile =	u t	1,3 m			1,3 m	+ E
Longueur utile =	75 m	m 06			260 m	90 m
Profondeur / pente =	120 m	200 m			200 m	100 m
porosité =	0,3	0,3			0,3	0,3
pente longitudinale =	0,005 m/m	0,005 m/m			0,005 m/m	0,005 m/m
Volume stocké =	10 m3	28 m3			39 m3	8 m3
						,
Appropriation name danverse 150 (0,0 x v 10) =		= :			E :	-
= argeur utile =		1,3 m			1,3 m	E
Longueur utile =		m 06			260 m	90 m
Profondeur / pente =		400 m			300 m	200 m
porosité =	6,0	0,3			0,3	0,3
pente longitudinale =	0,005 m/m	0,005 m/m			0,005 m/m	0,005 m/m
Volume stocké =	23 m3	63 m3			87 m3	21 m3
Approfondissement tranchée surverse 2 ième épisode T10 (1 x V10) =	2 m	2,5 m			2 m	2 m
Largeur utile =	-T	1,3 m			1,3 m	£
Longueur utile =	75 m	m 06			260 m	m 06
Profondeur / pente =	400 m	200 m			400 m	400 m
porosité =	6,0	6,0			0,3	0,3
pente longitudinale =	0,005 m/m	0,005 m/m			0,005 m/m	0,005 m/m
- Adores comitoly	44 m2	Com 00			407 000	01

4.1.11 Avenue des Loges – séquence dans la contre-allée jusqu'à l'usine de ventilation A14 (600 ml) L'approche est proposée par canton de 100 ml environ

de grandeur DREA pluie 10 ans 11/s/ha (nluie de 24 h)	=	actif retenu (m3)				37 40
méthode des pluies recherche V RR max	approche (25 mn≤t 4€	≤1440 mn)				49
Totimation	approche	SEVESC <1440 mn)				36
Débit de Surface fuite sertination	résultant qf	(Ns)				80'0
Surface	résultante	Sa (ha)				90'0
g O Z	végétalisée	l enrobé stabilisé en lisière Sa (ha)	0,35	2	100	200
	Trottoir	stabilisé	9'0	3	100	300
	Trottoir	enrobé	96'0			0
	Plateforme	minéra	0,95			0
Plateforme	Voirie TPC végétalisée Plateforme Trottoir Trottoir végétalisée résultante résultant qf	enherbé sur longrine	9'0	2	100	200
	TPC	enherbé	0,25	9	100	009
	Voirie	enrobé	0,95			
	Trottoir	enrobé	0,95			
	Section courante plateforme + fossé + accotement par	canton de 100 ml (contre-allée) et ce sur environ 600 ml	Coefficient ruissellement (*)	Largeur	Longueur	Surface (m2)

	Plateforme	ne
Stockage par tranchée de rétention :		
Hauteur utile NPHE 10 ans sous exutoire drain plateforme =	1,6 m	
= argeur utile =	1 E	
Longueur utile =	100 m	
porosité =	0,3	
pente longitudinale =	0,005 m/m	٤
Volume stocké =	41 m3	
Volume V10 à stocker =	40 m3	
Réserve volume de stockage au dessus du NPHE 10 ans (*) =	30 m3	
Volume supplémentaire à stocker T20 (0,25xV10) =	10 m3	
Volume supplémentaire à stocker T50 (0,6xV10) =	24 m3	
(*) sur la base de 0,3m3/m1		
Vérification du débit de fuite de la tranchée de rétention :		
vitesse =	vitesse = 0,000001 m3/m2/s	/m2/s
Surface d'infiltration nécessaire calée sur qf =	82 m2	
Surface des parois non étanchées à - 1,5 m sous le TN Sp =	320 m2	
Surface de la base Sb =	100 m2	
Test Surface efficace à 1/3(Sp+Sb) =	140 m2	
Test Surface efficace à 1/3(Sp) =	107 m2	ŏ

109/127

Tangentielle Ouest (TGO) Phase 1 NOTE ASSAINISSEMENT NOTE TECHNIQUE

SNC-LAVALIN

4.1.12 Avenue des Loges – séquence au-delà de l'usine de ventilation A14 en lisière de forêt

rdre	lie lie	,/ha	4 h) Volume	na moyen V10	retenu (m3)				36
Estimation Contrôle ordr	memode de grandeur des pluies DRIEA pluie	recherche V 10 ans 11/s/ha	active admissible Estimation BR max (pluie de 24 h)	450 m3/ha	actif				33
Estimation	des pluies	recherche \	BR max	vegétalisée Plateforme Trottoir Trottoir végétalisée résultante résultant qf approche (25 mn≤ t	SEVESC <1440 mn)				43
			Estimation	approche	SEVESC				31
	Débit de	fuite	admissible	résultant qf	(l/s)				20'0 20'0
		Surface		résultante	Sa (ha)				0,07
			Noue	végétalisée	enrobé stabilisé en lisière Sa (ha)	0,35	2	100	200
				Trottoir	stabilisé	9'0	က	100	300
				Trottoir	enrobé	0,95			0
				Plateforme	minéral	0,95			0
			Plateforme		enrobé enherbé sur longrine	9'0	7	100	200
				TPC	enherbé	0,25	2	100	200
				Voirie	_	0,95			
				Trottoir	enrobé	0,95			
			Section courante plateforme + fossé + accotement par	canton de 100 ml	et ce sur environ 1000 ml	Coefficient ruissellement (*)	Largeur	Longueur	Surface (m2)

																			ð
Plateforme		٤	m L	٤		m/m	38 m3	36 m3	30 m3	9 m3	21 m3			m3/m2/s	72 m2	300 m2	100 m2	133 m2	100 m2
Plate		1,5 m	-	100 m	0,3	0,005 m/m	38	36	30	6	21			0,000001	72	300	100	133	100
	Stockage par tranchée de rétention :	Hauteur utile NPHE 10 ans sous exutoire drain plateforme =	Largeur utile =	Longueur utile =	porosité =	pente longitudinale =	Volume stocké =	Volume V10 à stocker =	Réserve volume de stockage au dessus du NPHE 10 ans (*) =	Volume supplémentaire à stocker T20 (0,25xV10) =	Volume supplémentaire à stocker T50 (0,6xV10) =	(*) sur la base de 0,3m3/m1	Vérification du débit de fuite de la tranchée de rétention :	vitesse = 0,000001 m3/m2/s	Surface d'infiltration nécessaire calée sur qf =	Surface des parois non étanchées à - 1,5 m sous le TN Sp =	Surface de la base Sb =	Test Surface efficace à 1/3(Sp+Sb) =	Test Surface efficace à 1/3(Sp) =

111/127

4.2 Notes de Calcul Perimetre Virgule Saint-Cyr (SP2)

4.2.1 Bassins versants naturels amont au RFN (cf. approche MOE SNCF / GTAR 2006)

			countat	ons debits	Beneres par	les Bassins Versants	oa champ	- Agricule se	ion ia ine	oue GTAN	2000		
	Qev=	2,78	xCxixA	I/s		Qevx60/1000	m3/mn						
	C=	coefficier	nt pondéré	e de l'impl	uvium								
	C=	0,95	pour les c	haussées e	t parties rev	êtues							
	C=	0,85	pour plate	eforme fer	roviaire (0,5	selon Egis)							
	C =				e recevant l'	eau de la plateforme	ou chaus	sée cf. GTAR	2006				
	C =		pour les t										
	C=	0,3	pour les b	assins vers	ants naturel	s							
	1=		moy. de l'a			n/h correspondant a		e concentrat	tion au po	int de calcu	et donné	par la form	ule de Mon
		axtc^(-b)		tc= temps tc = tc1+tc		ation donné par la fo	ormule						
				tc=tc1+tc		nécessaire à l'eau de	o la plato f	romo nous	ttaladea l	l'ameraca de	en eu all		
				avec	And the second section in the second	al à 3mn dans la prat			acceinare i	ouvrage de	recueil		
						en mn mis par l'écou			sur une l	ongueur!			
						(51V) avec L en m et					nieté es	n/s au noiet	de calcul
					Jon the - L/	(311) avec ren m et	VILESSI	a section (meine de	. ourrage pr	ojete en i	au point	ac caredi
_													
_	Hypothès	e coefficie	nts Monta	na pour la	pluie décen	nale							
			water the second	0 ans					T = 1	10 ans	T = 1	00 ans	
			а	b					a	b	a	b	
		5< T _p <	12000	27233				5< T _p <	19219	Transport of	80000,0	24.00.000	
		25 min	208	0,335				25 min	208	0,335	575	0,549	
				_				25 < T _n	_	7		-	
		25 < T _p < 1 440	917	0.795				< 1 440	917	0.795	755	0.634	
		min	917	0,700				100000000000000000000000000000000000000	917	0,793	133	0,054	
			n do obilo i	T : période	do mtour			min cf. mail MC	ar cuer d	22/40/44		-	
		rp : mings	con pacses ;	i : panikani	Car PRICKE			cj. maii Mc	JE SNCF di	u 22/10/14			
	Hypothès	e coefficie	nts Monta	na nour la	pluie center	nale							
	Topomes			distriction.	•								
		Les coeffi	cients utilis	és sont les	suivants :								
					PARIS N	MONTSOURIS							
			(1982-2	011)									
				bes d'ajus	tement	*	a1	b1	_				
		des para	smètres de	Montana	-	T = 5 ans T = 10 ans	748 823	0.807	-				
						T = 20 ans	847	0,764					
		(a1,b1) s	i 25mn <tp< td=""><td>s pluie<14</td><td>40mn</td><td>T = 30 ans</td><td>812</td><td>0,725</td><td></td><td></td><td></td><td></td><td></td></tp<>	s pluie<14	40mn	T = 30 ans	812	0,725					
					-	T = 50 ans T = 100 ans	823	0,700	-				
						1 = 100 ans	773	0.054	_				
	Hypothès	e EGIS du	13/10/14:				-						
		T=5ans	T = 10 ans	T = 20 ans	T = 30 ans	T = 50 ans	T = 100						
						N. Centived	ans						
	a b	449,34 0,72	508,38	541,62 0,67	551,46 0,64	557,04 0.61							

Tangentielle Ouest (TGO) Phase 1

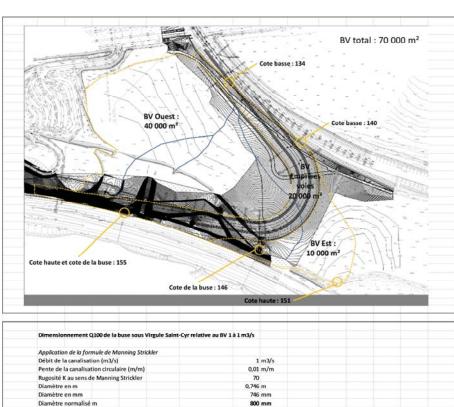
Hypothi	ses hauteur de	pluie journalière :									
P10	= hauteur de la	a pluie journalière d	écennale e	en mm		63,5	mm cf. hypo	thèse MOE	RFF et c	alcul EGIS	du 13/10/1
P100	= hauteur de la	a pluie journalière ce	entennale	en mm		79	mm par déc	uction à pa	rtir du ca	lcul EGIS d	lu 13/10/14
, , ,	= surface de l'i	mpluvium en ha (A	= Iongueui	r du projet x largeur)							
(Base m	étré EP)										
Estimati	on du bassin ve	ersant naturel n°1							C10		
			BV1=	140000	m2			C10 eq =	0,32		
				14	ha						
Estimati	on du bassin ve	ersant naturel n°2	BV2=	70000				640	C10		
-			BVZ=		mz ha			C10 eq =	0,30		
					па						
Courbe	DF de la région	d'étude pour T = 10	ans:								
i10 =	a x tc^(-b) mi	m/h avec tc en mn		(cf. tableau hypothè						e temps	
				qui correspond au te	emps de conce	entratio	n du bassin	versant con	sidété)		
-											-
_				BV1			BV2				
		Altitude du po	oint haut =				166				
		Altitude du po					149,5				
			noyenne =				0,032				
		Longuo	ur totale =	510			513				

= 10 ans				BV1		BV2					
	Calcul du débit résultant :	Longueurt	otalo -	510		513					
			fossé =	53,00		36,53					
		ıı	a =	917,00		917,00					
			b=	0,795		0,795					
			i10 =		mm/h		mm/h				
		Q	10 ev =	486,29		306,43					
					m3/s		m3/s				
				,							
											_
= 100 ans	Calcul du débit à évacuer au d	froit du fossé sud	l:	BV1		8V2					
	Rétention initiale bassin vers Coefficient de ruissellement		P0=	38,10 0,41		39.69 0,40			10/0,8)xP10 3x(1-P0/P10		
	Temps de concentration tc100			47,50		32,55			0x(P100-P0)		W 0 22
	remps de concentration (cao	,-	a=	755,00		755,00		10100=101	LIX (P100-PU)/(+10-+0)	7-0,23
			a = b =	0,63		0,634					
			i100 =		mm/h		mm/h				
		0.1	1100 =	1052,65		642,86		0100=2	78xC100xi10	Ov.A	
		ų,		1032,03	1/0	042,00	1/3	2100-2,	- CALLOWIII	~~~	
		Q1	00/Q10	2,16		2,10					
		Q100 ev re		1052,65		642,86					
				1,05	m3/s		m3/s				
			-								
	Réponse EGIS par mail du 25/										
	OH1: Q10=0.47 m3/s / Q100=			sultat comparable							
	OH2: Q10 = 0.32 m3/s / Q100:	= 0.67 m3/s	Ok ré	sultat comparable							
			_				_			_	
	Sh.42910.807					NE.		1			
	E 11.4 2 9 1 8 1 1	0.65	Ai	Cip	14						
			Aide	cial	14 INC						
		0.65	Aj	cial atte	1.4 1.4 (CV)						
	0.42	0.65	All	icienatie St-C	1.4						

Tangentielle Ouest (TGO) Phase 1

Dimensionnement Q100 de la buse sous Virgule Saint	-Cvr relative au BV 1 à 1 m3/s		
Dimensionment Quod de la base sous virgale same	cyr relative da by I a I mays		
Application de la formule de Manning Strickler			
Débit de la canalisation (m3/s)	1 m3,	/s	
Pente de la canalisation circulaire (m/m)	0,01 m/r	m	
Rugosité K au sens de Manning Strickler	70		
Diamètre en m	0,746 m		
Diamètre en mm	746 mm	1	
Diamètre normalisé m	800 mm	1	
Rayon hydraulique	0,2		
Surface de la canalisation (m2)	0,503 m2		
Vitesse (m/s)	1,99 m/s	s	
Vérification débit (m3/s)	1 m3,	/s	
Vérification de la vitesse	Ok 1m/s <v<4r< td=""><td>ms/s</td><td></td></v<4r<>	ms/s	

115/127


4.2.2 Bassins versants naturels champ INRA BV1 et BV2 (approche GTAR 2006)

	Hypothès	es hauteur	de pluie j	ournalière	:								
	P10 -	hauteur d	e la nluie i	iournaliàre	décennale e	n mm		63,5 mm cf. hyp	nthàsa MO	E DEE at a	alcul EGIS o	lu 13/10/14	
					centennale			79 mm par dé					
	F100-	ilauteul u	e ia piule j	ournanere	centennare	enniiii		75 IIIII pai det	лисион а р	ai tii uu ta	ilcui EGIS u	u 13/10/14	
	A=	surface de	l'impluvi	um en ha (A = longueur	du projet x largeur)							
	(Base mét												
	Estimation	i du bassin	versant n	aturel n°1						C10			
					BV1=				C10 eq =	0,30	(BV natur	el)	
						4	ha						
	Fation ation	. d., bassin		aturel n°2						C10			
	Estimation	i du bassiii	versanun	aturei ii 2	BV2=	10000			C10		(D) (= = +	-1)	
					BVZ=		mz ha		C10 eq =	0,30	(BV natur	eij	
						1	па						
	Courbe ID	E de la rég	ion d'étud	e pour T = :	In ans ·								
	Course ID	oc ia reg	ion a etua	C pour r = .									
	i10 =	a x tc^(-b)	mm/h ave	ectcen mn		(cf. tableau hypothè	se commu	ne MOE SNCF en fonct	ion de l'int	tervalle d	e temps		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					ncentration du bassin					
						,,	,			,			
						BV1		BV2					
			A	Altitude du	point haut =	155		151					
			Α	ltitude du	point base =	134		140					
				Pente	moyenne =	0,070		0,055					
				Longu	eur totale =	300		200					
		Vitesse d	l'écouleme	ent de l'eau	en nappe =	0,38	(cf. GTAR	2006) 0,31	(cf. GTAR	2006)			
= 10 ans	Calcul du	débit résul	tant:			BV1		BV2					
	4-64			Longu	eur totale =			200					
	tc fossé =				tc fossé =			15,65					
								208,00					
					p =	.,		0,335					
					i10 =		mm/h		mm/h				
					Q 10 ev =			69,03					
						0,26	m3/s	0,07	m3/s				
= 100 ans	Calcul du	débit à éva	cuer au dr	roit du foss	é sud :	BV1		BV2					
						511		512					
	Rétention	initiale ba	ssin versa	nt Fossé Vi	rgule P0 =	39,69	mm	39,69	mm	P0 = (1-C	10/0,8)xP10)	
	Coefficien					0,40		0,40			8x(1-P0/P1		
	Temps de					16,65		13,95)/(P10-P0)^(-0,23)
					a =			575,00					
					b =	0,549		0,549					
					i 100 =		mm/h		mm/h				
					Q 100 ev =			149,76		Q100 = 2,	78xC100xi1	00xA	
					Q100/Q10	2,09		2,17					
				Q100	ev retenu =	543,49	I/s	149,76	I/s				

Tangentielle Ouest (TGO) Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

0,503 m2

1,99 m/s

Ok 1m/s<V<4ms/s

Ok 2%<1<4%

1 m3/s

Rayon hydraulique

Vitesse (m/s)

Surface de la canalisation (m2)

Vérification débit (m3/s)

Vérification de la vitesse

Vérification de la pente

117/127

4.2.3 Assemblage Bassins versants naturels amont RFN et INRA BV1 et BV2 (approche GTAR 2006)

	C = C = C = i =	coefficient 0,95 0,85 0,7 0,35 0,3 intensité r axtc^(-b) coefficient 5< T _p < 25 min 25 < T _p < 1 440 min 7p: temps	pour les pour les pour les pour les pour les le pour les le pour les le moy. de l'	chaussées teforme fe erre végéta talus bassins ver l'averse dét tc= temp tc = tc1+t avec	et parties revêtu (5,5 seh de recevant l'eau causants naturels cennale en mm/ls s de concentratie (2) t. t. e temps nés (t.C. prise égal i t. t. e temps nés (t.C. prise égal i t. t. e t. e t. e t. e t. e t. e soit t. c. e t. e t. e t. e t. e t. e t. e	on Egis) I de la plateforme o correspondant a on donné par la fc cessaire à l'eau di 3 mn dans la prat mn mis par l'écou IV) avec L en m et	u temps de co rmule la plate-fror ique cf. GTAR lement dans	ncentration ne pour atte) l'ouvrage su	n au point eindre l'ou er une long ine de l'ou	vrage de rec ueur L	té en m/s T = 1 a 575		
н	C = C = C = C = i =	coefficient 0,95 0,85 0,7 0,35 0,3 intensité r axtc^(-b) coefficient 5< T _p < 25 min 25 < T _p < 1 440 min 7p: temps	t pondérir pour les t pour plat pour les t pour les t pour les t pour les t s Montan T = a 208	te de l'impr chaussées deforme fe erre végéta tabassins ver laverse déc tc= temp tc = tc1+t avec	et parties revêtu (5,5 seh de recevant l'eau causants naturels cennale en mm/ls s de concentratie (2) t. t. e temps nés (t.C. prise égal i t. t. e temps nés (t.C. prise égal i t. t. e t. e t. e t. e t. e t. e soit t. c. e t. e t. e t. e t. e t. e t. e	nes pon Egis) a de la plateforme n correspondant a on donné par la foc cessaire à l'eau di 3 3mn dans la prati mn mis par l'éco. IV) avec L en m et	ou chaussée u temps de co rmule : la plate-fror ique cf. GTAR lement dans	procentration ne pour atte) l'ouvrage su section plei 5< T _p < 25 min 25 < T _p	n au point de l'ou rune long ine de l'ou T = 1 a 208	ueur L ueur L l0 ans b 0,335	té en m/s T = 1 a 575	au point de	
	C = C = C = i =	0,95 0,85 0,7 0,35 0,3 intensité r axtc^(-b)	pour les pour les pour les pour les pour les le pour les le pour les le moy. de l'	chaussées teforme fe terre végétatalus bassins ver det tc= temp tc = tc1+t avec a pour la p 10 ans b 0,335 0,795	et parties revêtu (5,5 seh de recevant l'eau causants naturels cennale en mm/ls s de concentratie (2) t. t. e temps nés (t.C. prise égal i t. t. e temps nés (t.C. prise égal i t. t. e t. e t. e t. e t. e t. e soit t. c. e t. e t. e t. e t. e t. e t. e	on Egis) I de la plateforme o correspondant a on donné par la fc cessaire à l'eau di 3 mn dans la prat mn mis par l'écou IV) avec L en m et	u temps de co rmule la plate-fror ique cf. GTAR lement dans	procentration ne pour atte) l'ouvrage su section plei 5< T _p < 25 min 25 < T _p	n au point de l'ou rune long ine de l'ou T = 1 a 208	ueur L ueur L l0 ans b 0,335	té en m/s T = 1 a 575	au point de	
	C = C = C = i =	0,85 0,7 0,35 0,3 intensité r axtc^(-b)	pour plat pour la te pour les i pour les i moy, de l' s Montan T = 1 208	a pour la plant la pour la plant la pour la plant la plan	rrovaiare (0,5 sehale recevant l'eau sants naturels sennale en mm/l de concentratic c tc1 = temps né tc2 = temps en soit tc2 = t/(5)	on Egis) I de la plateforme o correspondant a on donné par la fc cessaire à l'eau di 3 mn dans la prat mn mis par l'écou IV) avec L en m et	u temps de co rmule la plate-fror ique cf. GTAR lement dans	procentration ne pour atte) l'ouvrage su section plei 5< T _p < 25 min 25 < T _p	n au point de l'ou rune long ine de l'ou T = 1 a 208	ueur L ueur L l0 ans b 0,335	té en m/s T = 1 a 575	au point de	
	C = C = i =	0,7 0,35 0,3 intensité r axtc^(-b) 5< T _p < 25 min 1 440 min	pour la te pour les l pour les l moy. de l' s Montan T = 1 a 208	a pour la p b 0,335 0,795	ale recevant l'eau reante naturels cennale en mm/l s de concentratio c c c c c c c c c c c c c c c c c c tc 1 = temps nés (tc prise égal i t tc 2 = temps nés ttc 2 = tc / (5)	de la plateforme n correspondant a on donné par la fo cessaire à l'eau d à 3mn dans la prat mn mis par l'écou [V] avec L en m et	u temps de co rmule la plate-fror ique cf. GTAR lement dans	procentration ne pour atte) l'ouvrage su section plei 5< T _p < 25 min 25 < T _p	n au point de l'ou rune long ine de l'ou T = 1 a 208	ueur L ueur L l0 ans b 0,335	té en m/s T = 1 a 575	au point de	
	C = C = i =	0,35 0,3 intensité r axtc^(-b)	pour les l pour les l moy. de l' s Montan T = 1 a 208	a pour la p 0,335 0,795	scants naturels cennale en mm/l s de concentratio c2 tc1 = temps né tc2 = tcmps en tc2 = temps en soit tc2 = t/\(51) pluie décennale	n correspondant a on donné par la fo cessaire à l'eau di 3mn dans la prat mn mis par l'écou IV) avec L en m et	u temps de co rmule la plate-fror ique cf. GTAR lement dans	procentration ne pour atte) l'ouvrage su section plei 5< T _p < 25 min 25 < T _p	n au point de l'ou rune long ine de l'ou T = 1 a 208	ueur L ueur L l0 ans b 0,335	té en m/s T = 1 a 575	au point de	
	C = i =	0,3 intensité r axtc^(-b) coefficient 5< T _p < 25 min 25 < T _p < 1 440 min T _D : temps	s Montan T = 1 208	a pour la j 10 ans b 0,335	cennale en mm/l s de concentratic c2 tc1 = temps nét (tc1 prise égal tc2 = temps en soit tc2 = L / (S1	on donné par la fo cessaire à l'eau d à 3mn dans la pra mn mis par l'écou IV) avec L en m et	rmule la plate-fror ique cf. GTAR lement dans	ne pour atte) l'ouvrage su section plei 5< T _p < 25 min 25 < T _p	r une longine de l'ou T = 1 a	ueur L ueur L l0 ans b 0,335	té en m/s T = 1 a 575	au point de	
	i =	intensité r axtc^(-b)	s Montan T = 1 208	a pour la p to a so to a pour la p to a so t	cennale en mm/l s de concentratic c2 tc1 = temps nét (tc1 prise égal tc2 = temps en soit tc2 = L / (S1	on donné par la fo cessaire à l'eau d à 3mn dans la pra mn mis par l'écou IV) avec L en m et	rmule la plate-fror ique cf. GTAR lement dans	ne pour atte) l'ouvrage su section plei 5< T _p < 25 min 25 < T _p	r une longine de l'ou T = 1 a	ueur L ueur L l0 ans b 0,335	té en m/s T = 1 a 575	au point de	
	Hypothèse	axtc^(-b) coefficient 5< T _p < 25 min 25 < T _p < 1440 min Tp : temps	s Montan T = 1 a 208	tc= temp tc = tc1+t avec a pour la p 10 ans b 0,335	s de concentration de c	on donné par la fo cessaire à l'eau d à 3mn dans la pra mn mis par l'écou IV) avec L en m et	rmule la plate-fror ique cf. GTAR lement dans	ne pour atte) l'ouvrage su section plei 5< T _p < 25 min 25 < T _p	r une longine de l'ou T = 1 a	ueur L ueur L l0 ans b 0,335	té en m/s T = 1 a 575	au point de	
		5< T _p < 25 min 25 < T _p < 1 440 min 7p : temps	T = 1	a pour la p 10 ans b 0,335	c2 tc1 = temps nét (tc1 prise égal tc2 = temps en soit tc2 = L / (5)	cessaire à l'eau d à 3mn dans la pra mn mis par l'écou IV) avec L en m et	la plate-fror ique cf. GTAR lement dans	'ouvrage su section plei 5< T _p < 25 min 25 < T _p	T=1	oueur L vrage proje 10 ans b 0,335	T = 1	100 ans	e calcul
		5< T _p < 25 min 25 < T _p < 1 440 min <i>Tp</i> : temps	T = 1	a pour la p 10 ans b 0,335	tc1 = temps nér (tc1 prise égal i tc2 = temps en soit tc2 = L / (51 pluie décennale	à 3mn dans la prat mn mis par l'écou IV) avec L en m et	ique cf. GTAR lement dans	'ouvrage su section plei 5< T _p < 25 min 25 < T _p	T=1	oueur L vrage proje 10 ans b 0,335	T = 1	100 ans	e calcul
		5< T _p < 25 min 25 < T _p < 1 440 min <i>Tp</i> : temps	T = 1	a pour la p 10 ans b 0,335	(tc1 prise égal tc2 = temps en soit tc2 = L / (51 pluie décennale	à 3mn dans la prat mn mis par l'écou IV) avec L en m et	ique cf. GTAR lement dans	'ouvrage su section plei 5< T _p < 25 min 25 < T _p	T=1	oueur L vrage proje 10 ans b 0,335	T = 1	100 ans	e calcul
		5< T _p < 25 min 25 < T _p < 1 440 min <i>Tp</i> : temps	T = 1	0,335 0,795	tc2 = temps en soit tc2 = L / (51 pluie décennale	mn mis par l'écou IV) avec L en m et	lement dans	Section plei	T = 1 a 208	10 ans b 0,335	T=1 a 575	100 ans	e calcul
		5< T _p < 25 min 25 < T _p < 1 440 min <i>Tp</i> : temps	T = 1	0,335 0,795	soit tc2=L/(Si	V) avec L en m et		5< T _p < 25 min 25 < T _p	T = 1 a 208	10 ans b 0,335	T=1 a 575	100 ans	e calcul
		5< T _p < 25 min 25 < T _p < 1 440 min <i>Tp</i> : temps	T = 1	0,335 0,795	pluie décennale			5< T _p < 25 min 25 < T _p	T=1 a 208	0,335	T=1 a 575	100 ans	
		5< T _p < 25 min 25 < T _p < 1 440 min <i>Tp</i> : temps	T = 1	0,335 0,795				25 min 25 < T _p	a 208	0,335	n 575	b	
		5< T _p < 25 min 25 < T _p < 1 440 min <i>Tp</i> : temps	T = 1	0,335 0,795				25 min 25 < T _p	a 208	0,335	n 575	b	
Н		25 min 25 < T _p < 1 440 min Tp : temps	a 208 917	0,335 0,795	o do retruir			25 min 25 < T _p	a 208	0,335	n 575	b	
н		25 min 25 < T _p < 1 440 min Tp : temps	208 917	0,335	o de minur			25 min 25 < T _p	208	0,335	575	0.0000000	
н		25 min 25 < T _p < 1 440 min Tp : temps	917	0,795	o de miour			25 min 25 < T _p	September 1		200	0,549	
Н		25 < T _p < 1 440 min Tp : temps			o de minur			25 < T _p	917	0.795	2013	+	1
Н		1 440 min Tp : temps			o de minur				917	0.795	55355		
,		min Tp : temps			o de refour			~1 440	2.6.1		755	0.634	
Н			de pluie :	T : période	e de retour			min		0,733	755	0,054	
Н								-	OE SNCF d	u 22/10/14		_	-
Н													
	rypothèse	coefficient	s Montan	a pour la p	pluie centennale	,							
		es coefficie	ents utilisé	s sont les	suivants :								
					DADIC MOI	UTCOURIE							
					PARIS MOI	NTSOURIS							
		Synthèse s	(1982-20 des court		ement		at [b1					
		des param	êtres de	Montana		T = 5 ans T = 10 ans	748 823	0,807					
						T = 20 ans	847	0,752					
		(a1,b1) si 2	5mn≺tps	pluie=144	10mm	T = 30 ans T = 50 ans	812	0,725					
						= 100 ans	773	0,654					
							1	1					
н	lypothèse	EGIS du 13	V10/14 :										
T T				L			T = 100	1					
		T = 5 ans	T = 10 ans	T = 20 ans	T = 30 ans	T = 50 ans	ans						
a	1	449,34	508,38	541,63	2 551,46	55	,04 550,8	b					
b		0,72	0,7				,61 0,56	A CONTRACTOR OF THE PARTY OF TH					
Ľ	'échantille	n de donne	ées couvr	e la périod	ie 1982 – 2006 et	les couples a et b	sont donnée:	pour l'inte	rvalle 6 – 1	440 mn			
				-								_	$\overline{}$
												1	_
н	lypothèse	hauteur d	e pluie io	umalière :									
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- prane jo										
	P10=	hauteur de	e la pluie	journalièn	e décennale en r	nm		63,5	mm cf. hy	pothèse MC	ERFFeto	alcul EGIS	du 13/10/14
	P100=	hauteur de	e la pluie	journalièn	e centennale en	mm		79	mm par de	duction à p	artir du ca	ilcul EGIS d	u 13/10/14
	. 230												

Tangentielle Ouest (TGO)
Phase 1

Assemblage en sé	rie des bass	ins versant	s naturels I	BV1 amont	RFN et BV1 Cham	p INRA	T10					
Bassins	A (ha)	L (hm)	a(b)	b(f)	(m/m)	С	К	CjxAj	Li/√li	E	Qpi retenu m3/s	
BV1 amont RFN	14,0000	5,10	917,00	0,795	0,0118	0,32		4,48	47	1	0,49	
BV1 aval INRA	4,0000	3,00	208,00	0,335	0,0700	0,30		1,20	11	2	0,26	
Bassin assemblé	Aeq	ΣLi	a(f)	b(f)	leq	Ceq	K	ΣCixAi	ΣLi/√li	Eeq		
BV'1	18,0000	8,10	917,00	0,795	0,0193	0,32		5,68	58	1,91		
Assemblage en sé	rie des bass	ns versant	s naturels I	BV1 amont	RFN et BV1 Cham	p INRA	T100					
Bassins	A (ha)	L (hm)	a(b)	b(f)	(m/m)	С	К	CjxAj	Li/√li	E	Qpi retenu m3/s	
BV1 amont RFN	14,0000	5,10	755,00	0,634	0,0118	0,41		5,80	47	1	1,05	
BV1 aval INRA	4,0000	3,00	575,00	0,549	0,0700	0,40		1,59	11	2	0,54	
Bassin assemblé	Aeq	ΣLi	a(f)	b(f)	leq	Ceq	K	ΣCixAi	ΣLi/√li	Eeq		
BV'1	18,0000	8,10	755,00	0,634	0,0193	0,41		7,39	58	1,91		
Assemblage en pa	rallèle des b	assins vers	sants natur	els BV2 am	ont RFN et BV2 CI	namp INRA	T10					
Bassins	A (ha)	L (hm)	a(b)	b(f)	(m/m)	С	К	CjxAj	Тс	E	Qpi retenu m3/s	li x Qpic
BV2 amont RFN	7,0000	5,13	917,00	0,795	0,0322	0,30		2,10	37	2	0,31	0,010
BV2 aval INRA	1,0000	2,00	208,00	0,335	0,0550	0,30		0,30	16	2	0,07	0,004
Bassin assemblé	Aeq	Leq (Ltcmax)	a(f)	b(f)	leq	Ceq	К	ΣCixAi	Tc retenu	Eeq	ΣQpic	Σli x Qpic
BV'2	8,0000	5,13	917,00	0,795	0,0364	0,30		2,40	36,53	1,81	0,38	0,014
Assemblage en pa	rallèle des b	assins vers	ants natur	els BV2 an	iont RFN et BV2 CI	namp INRA	T10					
Bassins	A (ha)	L (hm)	a(b)	b(f)	l (m/m)	С	К	CjxAj	Тс	E	Qpi retenu m3/s	li x Qpic
BV2 amont RFN	7,0000	5,13	755,00	0,634	0,0322	0,40		2,79	33	2	0,64	0,021
BV2 aval INRA	1,0000	2,00	575,00	0,549	0,0550	0,40		0,40	14	2	0,15	0,008
Bassin assemblé	Aeq	Leq (Ltcmax)	a(f)	b(f)	leq	Ceq	К	ΣCixAi	Tc retenu	Eeq	ΣQpic	Σli x Qpic
BV'2	8.0000	5.13	755.00	0.634	0.0365	0.40		3.18	32.55	1.81	0.79	0.029

						_			C10		
				BV'1=				C10 eq =	0,32	(BV naturel)	
					18,5	na					
									040		
				nu da	80000.0000			040	C10	(8)(
				BV'2=	,			C10 eq =	0,30	(BV naturel)	
			_		8	ha			_		_
	Courbe IDF	de la région d'éti	ide pour T = 10	ans:							
	140				(
	i10 =	a x tc^(-b) mm/h	avectcen mr		(cf. tableau hypothè					e temps	
					qui correspond au te	emps de concent	ration du bassin	versant co	nsidété)		
					BV'1		BV'2				
			Altitude	du point haut =	BV-1		BV-2				
				du point haut = du point base =							
				e équivalente =	0.019		0,036				
				le équivalente = le équivalente =	810		513				
				'eau en nappe =		(cf. GTAR 2006)		(cf. GTAR	2006)		
		vitesse d et	.ouiement de	ead en nappe -	0,20	(cr. GTAI 2000)	0,273	(ci. GIAII	2000)		
T = 10 ans	Calcul du d	ébit résultant :			BV'1		BV'2	(issu de B	V en para	llèle)	
			L	ongueur totale =	810	ml	513	ml			
	tc fossé =			tc fossé =	82,41	mn	39,58	mm			
				a =			917,00				
				b =			0,795				
				i10 =	27	mm/h	49	mm/h			
				Q 10 ev =	446,12	I/s	328,59	I/s			
					0,45	m3/s	0,33	m3/s			
				Q10 ev retenu =	0,49	m3/s	0,33	m3/s			
= 100 ans	Calcul du d	ébit résultant :			BV'1		BV'2				
	Rétention i	nitiale bassin ver	sant Fossé Vir	gule P0 =	38,45	mm	39,69	mm	PO = (1-C	10/0,8)xP10	
	Coefficient	de ruissellemen	C100 =		0,41		0,40			8x(1-P0/P100)	
	Temps de o	oncentration tc10	00 =		73,77	mn	35,27	mn	tc100=tc	10x(P100-P0)/(P	10-P0)^(-0,2
				a =	755,00		755,00				
				b =	0,634		0,634				
				i 100 =	49,40	mm/h	78,87	mm/h			
				Q 100 ev =	1043,17	I/s	698,30	I/s	Q100 = 2,	78xC100xi100xA	
				Q100/Q10	2,34		2,13				
			(Q100 ev retenu =	1043,17	I/s	698,30	I/s			
					1,04	m3/s	0,70	m3/s			
				Q100 ev retenu	1.05	m3/s	0.70	m3/s			

Tangentielle Ouest (TGO) Phase 1

Dimensionnement Q100 de	In house à Illeuranier du Divid			
Dimensionnement Q100 de	a buse a r exutorre du BV 1			
Application de la formule de	Mannina Strickler			
Débit de la canalisation (m3		1.05	m3/s	
Pente de la canalisation circ			m/m	
Rugosité K au sens de Mann		70		
Diamètre en m	ing serience	0,761		
Diamètre en mm			mm	
Diamètre normalisé m			mm	
Diametre normanise m		000		
Rayon hydraulique		0,2		
Surface de la canalisation (n	12)	0.503		
		3,000		
Vitesse (m/s)		2,09	m/s	
Vérification débit (m3/s)		1,052649	m3/s	
Vérification de la vitesse		Ok 1m/s<		
Vérification de la pente		Ok 2% <i<4< td=""><td></td><td></td></i<4<>		
Dimensionnement Q100 de	la buse à l'exutoire du BV'2			
Application de la formule de				
Débit de la canalisation (m3			m3/s	
Pente de la canalisation circ			m/m	
Rugosité K au sens de Mann	ng Strickler	70		
Diamètre en m		0,652		
Diamètre en mm		652	mm	
		652		
Diamètre en mm Diamètre normalisé m		652 700	mm mm	
Diamètre en mm Diamètre normalisé m Rayon hydraulique	2	652 700 0,175	mm mm	
Diamètre en mm Diamètre normalisé m	12)	652 700	mm mm	
Diamètre en mm Diamètre normalisé m Rayon hydraulique	12)	652 700 0,175	mm mm	
Diamètre en mm Diamètre normalisé m Rayon hydraulique Surface de la canalisation (n Vitesse (m/s) Vérification débit (m3/s)	12)	652 700 0,175 0,385 1,81 0,698299	mm mm mm m2 m/s m3/s	
Diamètre en mm Diamètre normalisé m Rayon hydraulique Surface de la canalisation (n Vitesse (m/s)	12)	652 700 0,175 0,385	mm mm mm m2 m/s m3/s	

121/127

4.2.4 Bassins versants emprise Virgule Saint-Cyr et rétentions associées (approche GTAR 2006)

		- or a cva	- JET JETOI		ac reconfic	ie (STAIL EOUD) at	droit des fossés en	pieu ue p	eioinie	Bure 3a	cy. vers	LAUTONE	
	Qev=	2,78	xCxixA	I/s									

	C=	coefficien			et parties re								
	C=				erroviaire (0,								
	C=						orme ou chaussée c	f. GTAR 20	06				
	C=		pourles										
	C=	0,35	pourles	parcelles	igricoles ou b	boisées (compris	entre 0,3 et 0,4)						
	i =		moy. de l'				ant au temps de con	centratio	n au point d	e calcul et	donné par	la formule	e de Monta
		axtc^(-b)		-		tration donné par	la formule						
				tc = tc1+t									
				avec			au de la plate-frome pratique cf. GTAR)	e pour atte	eindre Fouv	rage de re	cueil		
							écoulement dans l'o	nuvrage si	r une longi	eur I			
							m et V = vitesse à se				eté en m/s :	au point d	e calcul
_	_				_				_		_		
	Hypothès	coefficie	nts Monta	na pour l	a pluie déce	nnale							
			-		-			200 4	(4700000	700	0.0		
			1 = a	10 ans	-			a a	0 ans	T = 1	00 ans		
		5< T _p <			-		5< T ₀ <		-	-			
		25 min	208	0,335			25 min	208	0,335	575	0,549		
		25 < T _p < 1 440 min	917	0,795			25 < T _p < 1 440 min	917	0,795	755	0,634		
			de pluie .	T: périod	le de retour		cf. mail MOL	E SNCF du	22/10/14				
	Hypothès	coefficie	nts Monta	ina pour l	a pluie cente	ennale							
		Les coeffic	cients utilis	sés sont le	s suivants :								
						MONTSOUR							
					PARIS	MON ISOUR	RIS						
			(1982.			MONTSOUR							
			des cou	rbes d'ajur	stement		a1	b1 0.807					
			des cou		stement	T = 5 ans T = 10 ans	a1 748 823	0,807					
		des para	des cou mètres d	rbes d'ajur e Montana	stement	T = 5 ans T = 10 ans T = 20 ans	823 (847 (748 (748 (748 (748 (748 (748 (748	0,807 0,784 0,752					
		des para	des cou mètres d	rbes d'ajur	stement	T = 5 ans T = 10 ans T = 20 ans T = 30 ans T = 50 ans	823 (847 (812 (823 (823 (847 (812 (823 (823 (823 (823 (823 (823 (823 (82	0,807 0,784 0,752 0,725 0,700					
		des para	des cou mètres d	rbes d'ajur e Montana	stement	T = 5 ans T = 10 ans T = 20 ans T = 30 ans	823 (847 (823 (823 (823 (823 (823 (823 (823 (823	0,807 0,784 0,752 0,725		il manque	e a et b MO	E SNCF po	ur tc < 25 m
		des para	des cou mètres d	rbes d'ajur e Montana	stement	T = 5 ans T = 10 ans T = 20 ans T = 30 ans T = 50 ans	823 (847 (812 (823 (823 (847 (812 (823 (823 (823 (823 (823 (823 (823 (82	0,807 0,784 0,752 0,725 0,700		il manque	e a et b MO	E SNCF po	ur tc < 25 m
	Hypothès	des para (a1,b1) si	e des cou mêtres de i 25mn <tp< td=""><td>rbes d'ajur e Montana es pluie<14</td><td>stement</td><td>T = 5 ans T = 10 ans T = 20 ans T = 30 ans T = 50 ans T = 100 ans</td><td>91 748 (823 (847 (842 (842 (842 (842 (842 (842 (842 (842</td><td>0,807 0,784 0,752 0,725 0,700</td><td></td><td>il manqu</td><td>e a et b MO</td><td>E SNCF po</td><td>ur tc < 25 m</td></tp<>	rbes d'ajur e Montana es pluie<14	stement	T = 5 ans T = 10 ans T = 20 ans T = 30 ans T = 50 ans T = 100 ans	91 748 (823 (847 (842 (842 (842 (842 (842 (842 (842 (842	0,807 0,784 0,752 0,725 0,700		il manqu	e a et b MO	E SNCF po	ur tc < 25 m
	Hypothès	(a1,b1) s	des cou mêtres de i 25mn <tp< td=""><td>rbes d'ajur e Montana es pluie<14</td><td>stement</td><td>T = 5 ans T = 10 ans T = 20 ans T = 30 ans T = 50 ans T = 109 ans</td><td>91 748 (823 (847 (812 (823 (823 (823 (823 (823 (</td><td>0,807 0,784 0,752 0,725 0,700</td><td></td><td>il manque</td><td>e a et b MO</td><td>E SNCF po</td><td>ur tc < 25 m</td></tp<>	rbes d'ajur e Montana es pluie<14	stement	T = 5 ans T = 10 ans T = 20 ans T = 30 ans T = 50 ans T = 109 ans	91 748 (823 (847 (812 (823 (823 (823 (823 (823 (0,807 0,784 0,752 0,725 0,700		il manque	e a et b MO	E SNCF po	ur tc < 25 m
		(a1,b1) si e EGIS du T = 5 ans	25mn <tp< td=""><td>rbes d'ajur e Montana es pluie<14</td><td>440mn T = 30 ans</td><td>T = 5 ans T = 10 ans T = 20 ans T = 20 ans T = 30 ans T = 50 ans T = 100 ans T = 100 ans</td><td>31 748 (823 (847 (812 (823 (773 (</td><td>0,807 0,784 0,752 0,725 0,700</td><td></td><td>il manqui</td><td>e a et b MO</td><td>E SNCF po</td><td>ur tc < 25 m</td></tp<>	rbes d'ajur e Montana es pluie<14	440mn T = 30 ans	T = 5 ans T = 10 ans T = 20 ans T = 20 ans T = 30 ans T = 50 ans T = 100 ans T = 100 ans	31 748 (823 (847 (812 (823 (773 (0,807 0,784 0,752 0,725 0,700		il manqui	e a et b MO	E SNCF po	ur tc < 25 m
	Hypothès a b	(a1,b1) si e EGIS du T = 5 ans 449,34	13/10/14 : T = 10 an:	rbes d'ajur e Montana es pluie<14 s T = 20 an 8 541,6	stement 440mn T = 30 ans 5 T = 30 ans 2 551,4	T = 5 ans T = 10 ans T = 20 ans T = 30 ans T = 50 ans T = 50 ans T = 50 ans T = 50 ans	31 748 823 847 812 823 823 773	0,807 0,784 0,752 0,725 0,700		il manqui	e a et b MO	E SNCF po	ur tc < 25 m
	a b	(a1,b1) si e EGIS du T = 5 ans 449,34 0,72	13/10/14: T = 10 an:	rbes d'ajur e Montana es pluie<14 s T = 20 an 8 541,6 7 0,6	s T = 30 ans 2 551,4	T = 5 ans T = 10 ans T = 20 ans T = 20 ans T = 30 ans T = 50 ans	817 748 (6 823 647 6 823 647 6 812 6 817 6	0.807 0.784 0.762 0.725 0.700 0.664	tervalle 6 –		e a et b MO	E SNCF po	ur te < 25 m
	a b	(a1,b1) si e EGIS du T = 5 ans 449,34 0,72	13/10/14: T = 10 an:	rbes d'ajur e Montana es pluie<14 s T = 20 an 8 541,6 7 0,6	s T = 30 ans 2 551,4	T = 5 ans T = 10 ans T = 20 ans T = 20 ans T = 30 ans T = 50 ans	31 748 823 847 812 823 823 773	0.807 0.784 0.762 0.725 0.700 0.664	tervalle 6 –		e a et b MO	E SNCF po	ur tc < 25 m
	a b	(a1,b1) si e EGIS du T = 5 ans 449,34 0,72	13/10/14: T = 10 an:	rbes d'ajur e Montana es pluie<14 s T = 20 an 8 541,6 7 0,6	s T = 30 ans 2 551,4	T = 5 ans T = 10 ans T = 20 ans T = 20 ans T = 30 ans T = 50 ans	817 748 (6 823 647 6 823 647 6 812 6 817 6	0.807 0.784 0.762 0.725 0.700 0.664	tervalle 6 –		e a et b MO	E SNCF po	ur tc < 25 m
	a b	(a1,b1) si e EGIS du T = 5 ans 449,34 0,72 on de don	13/10/14: T = 10 an: 508,3 0,	rbes d'ajur e Montana es pluie<14 s T = 20 an 8 541,6 7 0,6 vre la péri	stement	T = 5 ans T = 10 ans T = 20 ans T = 20 ans T = 30 ans T = 50 ans	817 748 (6 823 647 6 823 647 6 812 6 817 6	0.807 0.784 0.762 0.725 0.700 0.664	tervalle 6 –		e a et b MO	E SNCF po	ur tc < 25 m
	a b L'échantil	e EGIS du T = 5 ans 449,34 0,72 lon de don	13/10/14 : T = 10 an: 508,3 0, nées cou	rbes d'ajur e Montana es pluie<14 s T = 20 an 8 541,6 7 0,6 vre la péri	stement	T = 5 ans T = 10 ans T = 20 ans T = 20 ans T = 50 ans	at 748 (6 823 (6 843 (6 844 (6	0.807 0.784 0.752 0.725 0.725 0.725 0.726 0.726 0.726 0.726	tervalle 6 –	1440 mn			

Tangentielle Ouest (TGO)
Phase 1

		ruefaco d	. Pimple:::	ım on h- /	A = longue	du projet ::	largour\							
	A=	surface de	! l'impluvit	ım en ha (A = longueur	du projet x	largeur)							
	(Base mét	ré ΔVP Vf)											_	
				écunéré na	r le fossé Est	nied de talı	ıs de la Vi	rgule Saint-C	vr ·		C10			
	Surface pla			cupere pa	116 10336 130	3930		iguie Jaine-C	yı .		0,85			
	Surface fo					700					0,7			
	Surface to		c taras			1900					0,35			
			ánátalicáa	en crête d	la talus –		m2				0,35			
			itocad, Ok)		A1=					C10 eq =				
	(723011123	ui piaii aa	tocuu, Ok)		71-	0,723				CIOEq-	0,00			
	_					0,723	11a							
	Estimation	du hassir	versant ré	écunéré na	r le fossé Ou	est de la Vir	gule Saint	-Cvr·			C10			
	Surface pla			cupere pu	11010330 00	3300		- Cyrr.			0,85			
	Surface fo					1120					0,7			
	Surface ta					2900					0,35			
			égétalisée	en crête d	e talus =	1120					0,35			
			itocad, Ok)		A2 =					C10 eq =				
	(SETTIME S	ur piair au	tocaa, ox,		742	0,844				CIOCQ	0,55			
	_					0,044								
	_												_	
	Courbe ID	E de la réo	ion d'étud	e pour T = 3	10 ans :									
	COULDE ID	uc iu icg	ion a ctaa	c pour r	10 0115 .									
	i10 =	a x tc^(-h)	mm/h ave	c tc en mn		(cf. tableau	hynothès	e commune	MOE SNCE e	n fonction	de l'inter	valle de te	mns	
	120	u x te (b)	iiiiii/ii uvc					nps de conce					ps	
						quiconcap	ond dd tc	iips ac conce		0033111 401	June comp	iderej		
	Fossé piec	l da talus :		large	eur en tête =	2	m							
	1 033c piec	ue taius .			ur en fond =									
	_				rofondeur =									
	_				aroi fossé =		degré	(nente may	. à 3 pour 2)					
	_			aligie p	alui iusse -		radians	(pente max	a 5 pour 2)					
					Rugosité K =							+	+	
		Dárimà	tro mouille		pleine Pm =									
		remme			ouillée Sm =									
	_				h (Sm/Pm) =									
	_		Rayoninya		moyenne =		m/m							
D	áhit canahla	colon la f	ormula da		trickler Qc =		m3/s	1 443	1/c					
					on (Qc/Sm) =				m/s					
	VICESSE	Je i ecouit	inent a pr	eme sectio) (QC/ 3III) -	2,31	111/3	2,31	111/3					
	_							-		-				
= 10 ans	Calcul du	láhit à áv:	cuer au dr	oit du foss	ó·	Est			Ouest					
- 10 ans	Calcul du	ic bit a c va	cuer au ur		ur canalisé =				560					
	_			Longue	tc fossé =					mm				
	_				a =				208.00				_	
	_				b =				0,335			_	_	
	_				i10=		mm/h			mm/h		+	+	
					Q 10 ev =				140,93			+	+	
					Q 10 cv -	Ok < Qc fos			Ok < Qc fos					
						UK ~ QL 105	~		UN - QL 105	~				
	_											+	+	
	_											+	+	
- 100 arc	Calcul du d	láhit à évr	acuer au de	oit du forr	ó·	Est			Ouest					
- 100 ails	Calcul du C	ie bit a eva	cuer au ur	on uu 1055	c .	ESI			ouest				+	
	Rétention	initiala br	essin waren	nt Fossé Vi	roule DO -	11,46	mm		16,51	mm	PO = /1-0	10/0,8)xP1	0	
			ellement C		-buic ru -	0,68			0,63			.10/0,8)XP1 8x(1-P0/P1		
			tion tc100 :			8,02			7,98				PO)/(P10-P0	1114/-0 221
	remps de			_	a =	575,00			575,00		1100-11	10x[[F100-F	U// [F 10-PU	/// (*U,23/
	utilication	ues coeffic	Jeitts KFF											
	utilisation				b = i100 =				0,549					
	utilisation					183	mm/h		184	mm/h				
	utilisation						1.6				0400 -	70 6406	100 4	
	utilisation				Q 100 ev =				273		Q100 = 2,	,78xC100xi1	100xA	
	utilisation				Q 100 ev =	Ok < Qc fos	sé		Ok < Qc fos	sé	Q100 = 2,	.78xC100xi	100xA	
	utilisation				Q 100 ev =	Ok < Qc fos: 1,88	sé			sé	Q100 = 2,	,78xC100xi	100xA	

4.2.5 Estimations des volumes de rétention compensatoires de l'imperméabilisation supplémentaire générée au droit de la Virgule Saint-Cyr

		Es	timation	des volumes de	rétention				
		pluie 10 ans 1l/s/ha (pluie		: 450 m3/ha act	<u>if</u>		·		
sur surface activ	re supplément	aire générée par le projet							
		A =	0,723		0,844		567 ha		
		Q fuite 1l/s/ha =	0,723	I/s	0,844	l/s 1,	567 I/s		
	Coefficier	nt apport existant C10 =	0,35		0,35				
	Coeffici	ent apport projet C10 =	0,66		0,59				
ace active supplémenta	ire résultante	A x (Ca projet - Ca exi)=	0,22	ha	0,20	ha (,43 ha		
Q	fuite surface a	ctive supplémentaire =	0,22	I/s	0,20	I/s (,43 I/s	temp	s vidange
	Vo	lume 10 ans résultant =	99	m3	92	m3	191 m3	5 j	
	Volume 20	ans résultant (x1,25) =	124	m3	115	m3	239 m3	7 j	
	Volume 5	0 ans résultant (x1,6) =	159	m3	147	m3	306 m3	8 j	
V	olume 100 ans	résultant estimé (x2) =	199	m3	184	m3	383 m3	10 j	
Test méthode V	BR max. pluie	10 ans 1l/s/ha (pluie de 24	h) Estima	ation méthode	des pluies recherch	e V BR max (25 m	n≤ t ≤1440 m	n)	
		aire générée par le projet						•	
		A =	0,723	ha	0,844	ha 1.	567 ha		
		Q fuite 1l/s/ha =	0,723		0,844		567 I/s		
	Coefficier	nt apport existant C10 =	0,35		0,35				
		ent apport projet C10 =	0,66		0,59				
ace active supplémenta			0,22		0,20		,43 ha		
		ctive supplémentaire =	0,22		0,20		,43 l/s	temp	s vidange
		jet)-V10 (BV existant) =		m3	129		270 m3	7 j	
		jet)-V10 (BV existant) =	126	m3	115	m3	241 m3	7 j	
		jet)-V10 (BV existant) =	226	m3	206	m3	432 m3	12 j	
		jet)-V10 (BV existant) =		m3			541 m3	15 j	
	(= 1 8.000. p. 0)								
- : 61 1 -									
Test méthode S									
sur surface activ	e supplement	aire générée par le projet							
		A =	0,723		0,844		567 ha		
		Q fuite 1l/s/ha =	0,723		0,844		567 I/s		
		nt apport existant C10 =	0,35		0,35				
		ent apport projet C10 =	0,66		0,59				
face active supplémenta			0,22		0,20		,43 ha		
		ctive supplémentaire =	0,22		0,20		,43 I/s		s vidange
		jet)-V10 (BV existant) =		m3			193 m3	5 j	
		jet)-V10 (BV existant) =		m3			241 m3	7 j	

202 m3

147 m3

184 m3

308 m3

386 m3

8 j

10 j

123/127

V50 résultant = V50 (BV global projet)-V10 (BV existant) =

V100 résultant = V100 (BV global projet)-V10 (BV existant) =

Tangentielle Ouest (TGO) Phase 1

	e de grandous Doies	A pluie 10 a	11/c/ba /w/	io do 24 F	· 450 m²/ba	eif .			
by Virgu	re de grandeur DRIEA		ıı/s/na (plu	ne de 24 h)	: 450 m3/na ad	<u>ur</u>			
	le surface active exis	stante							
			A =	0,723		0,844			
			te 1l/s/ha =	0,723		0,844		I/s	
		apport état ex		0,35		0,35			
		ve existante r		0,25		0,30			
		olume 10 ans			m3	133		m3	
	Volume	20 ans résulta	ant (x1,25) =	142	m3	166	m3 309	m3	
	Volume	e 50 ans résult	tant (x1,6) =	182	m3	213	m3 395	m3	
	Volume 100 an	ns résultant e	stimé (x2) =	228	m3	266	m3 494	m3	
Test mét	hode VBR max. pluie	e 10 ans 11/s/	ha (pluie de :	24 h) Estima	ation méthode	des pluies recherche	V BR max (25 mn≤1	≤1440 mn	,
	le surface active exis			,					
De enga	ic surface delive exis	Stante	A =	0,723	ha	0.844	ha 1,56 7	' ha	
		O fui	te 1l/s/ha =	0,723		0,844			
	Coofficient	apport état ex		0,723		0,844		1/5	
_								ha	
		ve existante i		0,25		0,30			
_		/olume 10 ans			m3	137		m3	
		20 ans résulta			m3	172		m3	
		e 50 ans résult			m3	220		m3	
	Volume 100 an	ns résultant e	stimé (x2) =	236	m3	275	m3 511	m3	
Test mét	hode SEVESC pluie 1	10 ans 11/s/ha							
	le surface active exis								
			A =	0,723	ha	0,844	ha 1,567	' ha	
		Q fui	te 1l/s/ha =	0,723	I/s	0,844	I/s 1,567	1/s	
	Coefficient a	apport état ex		0,35		0,35		,,-	
		ve existante r		0.25		0.30		ha	
		olume 10 ans			m3			m3	
		20 ans résulta			m3	123		m3	
							1113	m3 m3	
		e 50 ans résult			m3	158			
	Volume 100 an	ns résultant e	stimé (x2) =	169	m3	197	m3 366	m3	
	e de grandeur DRIEA								
en repre	nant 100 % du BV Vir	rgule (surface	active exist						
			A =	0,723	ha	0,844	ha 1,567	' ha	
	Q fuite 11/	/s/ha x surfac	e narcelle =		I/s		1/- 1 503		
			c parcerre	0,723		0,844	1/5 1,507	I/s	
	Coefficient	apport état pi		0,723 0,66		0,844		I/s	
		apport état pi urface active i	rojeté C10 =						temps vidang
	Su	urface active r	rojeté C10 = résultante =	0,66 0,47	ha	0,59 0,50	ha 0,9 7		
Volum	Su V	urface active r /olume 10 ans	rojeté C10 = résultante = s résultant =	0,66 0,47 213	ha m3	0,59 0,50 225	ha 0,97 m3 438	' ha	3 ј
	Su V me supplémentaire	urface active r /olume 10 ans 20 ans résulta	rojeté C10 = résultante = s résultant = ant (x1,25) =	0,66 0,47 213 267	ha m3 m3	0,59 0,50 225 281	ha 0,97 m3 438 m3 548	ha m3 m3	3 j 4 j
Volu	Su V me supplémentaire ume supplémentaire	urface active r /olume 10 ans 20 ans résulta e 50 ans résult	rojeté C10 = résultante = s résultant = ant (x1,25) = tant (x1,6) =	0,66 0,47 213 267 341	ha m3 m3 m3	0,59 0,50 225 281 360	ha 0,97 m3 438 m3 548 m3 701	ha m3 m3 . m3	3 j 4 j 5 j
Volu	Su V me supplémentaire	urface active r /olume 10 ans 20 ans résulta e 50 ans résult	rojeté C10 = résultante = s résultant = ant (x1,25) = tant (x1,6) =	0,66 0,47 213 267 341	ha m3 m3	0,59 0,50 225 281 360	ha 0,97 m3 438 m3 548 m3 701	ha m3 m3	3 j 4 j
Volu	Su V me supplémentaire ume supplémentaire	urface active r /olume 10 ans 20 ans résulta e 50 ans résult	rojeté C10 = résultante = s résultant = ant (x1,25) = tant (x1,6) =	0,66 0,47 213 267 341	ha m3 m3 m3	0,59 0,50 225 281 360	ha 0,97 m3 438 m3 548 m3 701	ha m3 m3 . m3	3 j 4 j 5 j
Volume su	Su we supplémentaire ume supplémentaire pplémentaire 100 an	urface active r /olume 10 ans 20 ans résulta e 50 ans résult ns résultant e	rojeté C10 = résultante = s résultant = ant (x1,25) = tant (x1,6) = stimé (x2) =	0,66 0,47 213 267 341 427	ha m3 m3 m3	0,59 0,50 225 281 360	ha 0,97 m3 438 m3 548 m3 701	ha m3 m3 . m3	3 j 4 j 5 j
Volume su Test mét	Su V me supplémentaire Jume supplémentaire pplémentaire 100 an phode VBR max. pluie	urface active r /olume 10 ans 20 ans résulta e 50 ans résult ns résultant e e 10 ans 11/s/	rojeté C10 = résultante = résultant = résultant = ant (x1,25) = tant (x1,6) = stimé (x2) =	0,66 0,47 213 267 341 427	ha m3 m3 m3 m3	0,59 0,50 225 281 360 450	ha 0,97 m3 438 m3 548 m3 701 m3 876	ha m3 m3 . m3	3 j 4 j 5 j
Volume su Test mét	Su we supplémentaire ume supplémentaire pplémentaire 100 an	urface active r /olume 10 ans 20 ans résulta e 50 ans résult ns résultant e e 10 ans 11/s/	rojeté C10 = résultante = s résultant = ant (x1,25) = tant (x1,6) = stimé (x2) = ha (pluie de	0,66 0,47 213 267 341 427 24 h) ante + surfa	ha m3 m3 m3 m3 cce active supp	0,59 0,50 225 281 360 450	ha 0,91 m3 438 m3 548 m3 700 m3 876	' ha ! m3 ! m3 . m3 ! m3	3 j 4 j 5 j
Volume su Test mét	Su V v me supplémentaire ume supplémentaire pplémentaire 100 an hode VBR max. pluie nant 100 % du BV Vir	urface active r /olume 10 ans 20 ans résulta e 50 ans résultans résultant e e 10 ans 11/s/r rgule (surface	rojeté C10 = résultante = s résultant = ant (x1,25) = tant (x1,6) = stimé (x2) = ha (pluie de active exist A =	0,66 0,47 213 267 341 427 24 h) ante + surfa 0,723	ha m3 m3 m3 m3 m3 has cee active supp	0,59 0,50 225 281 360 450	ha 0,97 m3 438 m3 548 m3 876 m3 876	ha m3 m3 m3 m3 im3	3 j 4 j 5 j
Volume su Test mét	Su V v me supplémentaire ume supplémentaire pplémentaire 100 an hode VBR max. pluie nant 100 % du BV Vir	urface active r /olume 10 ans 20 ans résulta e 50 ans résult ns résultant e e 10 ans 11/s/	rojeté C10 = résultante = s résultant = ant (x1,25) = tant (x1,6) = stimé (x2) = ha (pluie de active exist A =	0,66 0,47 213 267 341 427 24 h) ante + surfa	ha m3 m3 m3 m3 m3 has cee active supp	0,59 0,50 225 281 360 450	ha 0,97 m3 438 m3 548 m3 876 m3 876	ha m3 m3 m3 m3 im3	3 j 4 j 5 j
Volume su Test mét	Su V me supplémentaire pune supplémentaire pplémentaire 100 an hode VBR max. pluie nant 100 % du BV Vir	urface active r /olume 10 ans 20 ans résulta e 50 ans résultans résultant e e 10 ans 11/s/r rgule (surface	rojeté C10 = résultante = s résultant = ant (x1,25) = tant (x1,6) = stimé (x2) = ha (pluie de active exist A = se parcelle =	0,66 0,47 213 267 341 427 24 h) ante + surfa 0,723	ha m3 m3 m3 m3 m3 loce active supp ha l/s	0,59 0,50 225 281 360 450	ha 0,97 m3 438 m3 548 m3 701 m3 876 parle projet) ha 1,567	ha m3 m3 m3 m3 im3	3 j 4 j 5 j
Volume su Test mét	Su V V Me supplémentaire ume supplémentaire pplémentaire 100 an hode VBR max. pluie nant 100 % du BV Vir Q fuite 1/ Coefficient a	urface active r /olume 10 ans 20 ans résulta e 50 ans résulta ns résultant e e 10 ans 1/s/r rgule (surface	rojeté C10 = résultante = s résultant = ant (x1,25) = tant (x1,6) = stimé (x2) = ha (pluie de e active exist A = te parcelle = eistant C10 =	0,66 0,47 213 267 341 427 24 h) ante + surfa 0,723 0,723	ha m3 m3 m3 m3 loce active supp ha l/s	0,59 0,500 225 281 360 450	ha 0,97 m3 438 m3 548 m3 701 m3 876 parle projet) ha 1,567	ha m3	3 j 4 j 5 j
Volume su Test mét	Su me supplémentaire i ume supplémentaire pplémentaire 100 an hode VBR max. pluie nant 100 % du BV Vir Q fuite 1/ Coefficient a	urface active r /olume 10 ans 20 ans résulta e 50 ans résulta ns résultant e e 10 ans 11/s/r rgule (surface /s/ha x surface	rojeté C10 = résultante = srésultant = ant (x1,25) = tant (x1,6) = stimé (x2) = ha (pluie de active exist A = e parcelle = sistant C10 = résultante =	0,666 0,47 213 267 341 427 24 h) ante + surfa 0,723 0,723 0,666	ha m3 m3 m3 m3 loce active supp ha l/s	0,59 0,50 0,50 225 281 360 450 450 0,844 0,844 0,844	ha 0,99 m3 438 m3 544 m3 700 m3 876 par le projet) ha 1,567 ha 0,99	ha m3	3 j 4 j 5 j 6 j
Volume su Test mét	Su we supplémentaire ; ume supplémentaire ; ume supplémentaire 100 an hode VBR max. pluid nant 100 % du BV Vir Q fuite 1/ Coefficient a Su V	urface active r /olume 10 ans 20 ans résulta e 50 ans résultans résultant e e 10 ans 11/s/r rgule (surface /s/ha x surface apport état ex urface active r	rojeté C10 = résultante = s résultante =	0,666 0,477 213 267 341 427 24 h) ante + surfa 0,723 0,763 0,477 259	ha m3 m3 m3 m3 loce active supp ha l/s	0,59 0,50 2255 281 360 450 450 0,844 0,844 0,959	ha 0,91 m3 438 m3 548 m3 701 m3 876 parle projet) ha 1,561 l/s 1,567 ha 0,91 m3 526	ha m3 m3 m3 m3 m3	3 j 4 j 5 j 6 j
Volume su Test mét	Su me supplémentaire : ume supplémentaire ume supplémentaire pplémentaire 100 an hode VBR max. pluie nant 100 % du BV Vir Q fuite 1/ Coefficient a Su Volume :	urface active r /olume 10 ans 20 ans résulta 20 ans résulta e 50 ans résulta ns résultant e e 10 ans 11/s/ rgule (surface /s/ha x surfac apport état ex urface active r /olume 10 ans 20 ans résulta	rojeté C10 = résultante = s résultante = ant (x1,6) =	0,666 0,477 213 267 341 427 24 h) ante + surfa 0,723 0,723 0,66 0,47 259	ha m3 m3 m3 loce active supp ha l/s	0,59 0,50 225 281 3606 450 450 450 0,844 0,844 0,944 0,59 0,50 266 3333	ha 0,97 m3 438 m3 548 m3 7007 m3 876 parle projet) ha 1,567 ha 0,97 m3 528 m3 665	ha im3 m3 im3 im3 im3 im3 im3 im3	3 j 4 j 5 j 6 j temps vidan; 4 j 5 j
Volume su Test mét	Su vy we supplémentaire : ume supplémentaire pplémentaire pplémentaire 100 an hode VBR max. pluit nant 100 % du BV Vir Coefficient a vy Volume	urface active r //olume 10 ans 20 ans résulta e 50 ans résulta ns résultant e e 10 ans 1l/s/ rgule (surface //s/ha x surface apport état ex urface active r //olume 10 ans 20 ans résulta e 50 ans résult	rojeté C10 = résultante = s résultante = s résultante = s résultant = lant (x1,25) = tant (x1,25) = tant (x1,6) = stimé (x2) = s timé (x2) = s timé (x2) = s timé (x2) = s résultant C10 = résultant = s résultant = lant (x1,25) = tant (x1,5) = tant (x1,6) =	0,666 0,47 213 267 3441 427 24 h) ante + surfa 0,723 0,666 0,47 259 324 415	m3 m	0,59 0,50 225 281 360 450 450 0,844 0,844 0,99 0,50 266 333	Name	ha m3 m3 m3 ha l/s	3 j 4 j 5 j 6 j 6 j 6 j 6 j 6 j 6 j 6 j 6 j 6
Volume su Test mét	Su me supplémentaire : ume supplémentaire ume supplémentaire pplémentaire 100 an hode VBR max. pluie nant 100 % du BV Vir Q fuite 1/ Coefficient a Su Volume :	urface active r //olume 10 ans 20 ans résulta e 50 ans résulta ns résultant e e 10 ans 1l/s/ rgule (surface //s/ha x surface apport état ex urface active r //olume 10 ans 20 ans résulta e 50 ans résult	rojeté C10 = résultante = s résultante = s résultante = s résultant = lant (x1,25) = tant (x1,25) = tant (x1,6) = stimé (x2) = s timé (x2) = s timé (x2) = s timé (x2) = s résultant C10 = résultant = s résultant = lant (x1,25) = tant (x1,5) = tant (x1,6) =	0,666 0,47 213 267 3441 427 24 h) ante + surfa 0,723 0,666 0,47 259 324 415	ha m3 m3 m3 loce active supp ha l/s	0,59 0,50 225 281 3606 450 450 450 0,844 0,844 0,944 0,59 0,50 266 3333	Name	ha m3 m3 m3 ha l/s	3 j 4 j 5 j 6 j temps vidan; 4 j 5 j
Volume su Test mét	Su vy we supplémentaire : ume supplémentaire pplémentaire pplémentaire 100 an hode VBR max. pluit nant 100 % du BV Vir Coefficient a vy Volume	urface active r //olume 10 ans 20 ans résulta e 50 ans résulta ns résultant e e 10 ans 1l/s/ rgule (surface //s/ha x surface apport état ex urface active r //olume 10 ans 20 ans résulta e 50 ans résult	rojeté C10 = résultante = s résultante = s résultante = s résultant = lant (x1,25) = tant (x1,25) = tant (x1,6) = stimé (x2) = s timé (x2) = s timé (x2) = s timé (x2) = s résultant C10 = résultant = s résultant = lant (x1,25) = tant (x1,5) = tant (x1,6) =	0,666 0,47 213 267 3441 427 24 h) ante + surfa 0,723 0,666 0,47 259 324 415	m3 m	0,59 0,50 225 281 360 450 450 0,844 0,844 0,99 0,50 266 333	Name	ha m3 m3 m3 ha l/s	3 j 4 j 5 j 6 j 6 j 6 j 6 j 6 j 6 j 6 j 6 j 6
Volume su	Su V V V V V V V V V V V V V V V V V V V	urface active ir //olume 10 ans résulta 20 ans résultant e e 50 ans résultant e e 10 ans 11/s/l/ rgule (surface /s/ha x surfac apport état ex urface active ir /olume 10 ans /olume 20 ans résulta e 50 ans résultant e e 50 ans résultant e /olume 10 ans /olume	rojeté C10 = résultante = résultante = résultante = résultante = ant (x1,25) = tant (x1,6) = stimé (x2) = tant (x1,6) = résultante = résultante = résultante = résultante = tant (x1,25) = tant (x1,6) = stimé (x2) =	0,666 0,47 213 267 3441 427 24 h) ante + surfa 0,723 0,666 0,47 259 324 415	m3 m	0,59 0,50 225 281 360 450 450 0,844 0,844 0,99 0,50 266 333	Name	ha m3 m3 m3 ha l/s	3 j 4 j 5 j 6 j 6 j 6 j 6 j 6 j 6 j 6 j 6 j 6
Volume su Test mét en repre	Su version de la constitución de	urface active is foliume 10 ans 10/s/ma e 10 ans 11/s/ma e 10 ans 41/s/ma e 10 ans 11/s/ma	rojeté C10 = résultante = s résultante = s résultante = s résultante = s résultante = lant (x1,25) = tant (x1,6) = stimé (x2) = tant (x1,6) = stimé (x2) = A = e parcelle = sistant C10 = résultante = s résultante = s résultante = s résultante = s résultante = stimé (x1,6) = stimé (x2) =	0,66 0,47 213 267 341 427 24 h) ante + surfa 0,723 0,723 0,723 0,66 0,47 259 324 415 519	ha m3	0,59 0,500 225 281 3600 450 450 450 666666666666666666666666	ha 0,97 m3 438 m3 548 m3 7007 m3 876 parle projet) ha 1,567 ha 0,97 m3 526 m3 657 m3 844 m3 1053	ha m3 m3 m3 ha l/s	3 j 4 j 5 j 6 j 6 j 6 j 6 j 6 j 6 j 6 j 6 j 6
Volume su Test mét en repre	Su V V V V V V V V V V V V V V V V V V V	urface active is foliume 10 ans 10/s/ma e 10 ans 11/s/ma e 10 ans 41/s/ma e 10 ans 11/s/ma	rojeté C10 = résultante = résultante = résultante = résultante = resultante = resultante = resultante = resultante (x1,25) = tant (x1,6) = tant (x1,6) = tant (x1,6) = résultante = résultante = resultante = resulta	0,666 0,47 213 267 341 427 24 h) ante + surfa 0,723 0,666 0,474 259 324 415 519	ha m3 m3 m3 m3 l/s	0,59 0,500 225 281 3600 450 450 450 6,844 0,844 0,599 0,50 266 3333 426 533	ha 0,97 m3 438 m3 544 m3 701 m3 876 ha 1,567 ha 0,97 m3 526 m3 6555 m3 841 m3 1053	ha m3 m3 m3 m3 m3 l/s ha im3 m3 m3 m3	3 j 4 j 5 j 6 j 6 j 6 j 6 j 6 j 6 j 6 j 6 j 6
Volume su Test mét en repre	Sume supplémentaire : me supplémentaire 100 an hode VBR max. pluie nant 100 % du BV Vir Q tuite 1// Coefficient a Su Volume: Volume Volume 100 an hode SEVESC pluie 1 nant 100 % du BV Vir	urface active roloure 10 ans 20 ans résultate e 50 ans résultant e so ans résultant e la compartitude e 10 ans 11/s/hargule (surface active roloure 10 ans 11/s/hargule (surface active e 50 ans résultant e so 30 ans résultant e roloure 10 ans 11/s/hargule (surface active roloure 10 ans 11/s/hargule (surface active roloure 10 ans 11/s/hargule (surface active roloure 10 ans 11/s/hargule (surface (surface active roloure 10 ans 11/s/hargule (surface (surface active roloure 10 ans 11/s/hargule roloure 10 ans 11/s/hargule roloure 10 ans 11/s/hargule roloure 10 ans 11/s/hargule roloure 10 ans 11	rojeté C10 = résultante = résultante = résultante = résultante = résultante = resultante (x1,25) = tant (x1,6) = stimé (x2) = tant (x1,6) = tanté (x2) = résultante = résultante = résultante = résultante = résultante = tant (x1,6) = stimé (x2) = tant (x2) = tant (x3) = résultante = résultant	0,666 0,47 213 267 341 427 24 h) ante + surfa 0,723 0,723 0,666 0,47 259 3244 415 519	ha m3	0,59 0,500 225 281 3860 450 450 0,844 0,844 0,59 0,500 2666 3333 426 5333	ha 0,97 m3 438 m3 548 m3 764 m3 876 parle projet) ha 1,567 ha 0,97 m3 652 m3 652 m3 651 m3 1053	ha m3 m3 m3 m3 m3 ha l/s ha m3 m3 m3	3 j 4 j 5 j 6 j 6 j 6 j 6 j 6 j 6 j 6 j 6 j 6
Volume su Test mét en repre	Su V V V V V V V V V V V V V V V V V V V	urface active rurface active ruface rufface ruffac	rojeté C10 = résultant = si résultant = si résultant = ant (x1,25) = tant (x1,6) = stimé (x2) = stimé (x2) = stimé (x2) = si résultant = si résultant = si résultant = ant (x1,25) = tant (x1,6) = stimé (x2) = stimé	0,66 0,47 213 267 341 427 24 h) ante + surfa 0,723 0,66 0,47 259 324 415 519	ha m3	0,59 0,50 0,50 225 281 3606 450 450 46mentaire générée 0,844 0,959 0,50 266 3333 426 533	ha 0,97 m3 438 m3 548 m3 7007 m3 876 parle projet) ha 1,567 m3 526 m3 627 m3 841 m3 1051 parle projet) ha 1,567	ha m3 m3 m3 m3 m3 ha l/s ha m3 m3 m3	3 j 4 j 5 j 6 j 6 j 6 j 6 j 6 j 6 j 6 j 6 j 6
Volume su Test mét en repre	Su V V V V V V V V V V V V V V V V V V V	urface active roloure 10 ans 20 ans résultate e 50 ans résultant e so ans résultant e la compartitude e 10 ans 11/s/hargule (surface active roloure 10 ans 11/s/hargule (surface active e 50 ans résultant e so 30 ans résultant e roloure 10 ans 11/s/hargule (surface active roloure 10 ans 11/s/hargule (surface active roloure 10 ans 11/s/hargule (surface active roloure 10 ans 11/s/hargule (surface (surface active roloure 10 ans 11/s/hargule (surface (surface active roloure 10 ans 11/s/hargule roloure 10 ans 11/s/hargule roloure 10 ans 11/s/hargule roloure 10 ans 11/s/hargule roloure 10 ans 11	rojeté C10 = résultant = si résultant = si résultant = ant (x1,25) = tant (x1,6) = stimé (x2) = stimé (x2) = stimé (x2) = si résultant = si résultant = si résultant = ant (x1,25) = tant (x1,6) = stimé (x2) = stimé	0,666 0,47 213 267 341 427 24 h) ante + surfa 0,723 0,723 0,666 0,47 259 3244 415 519	ha m3	0,59 0,500 225 281 3860 450 450 0,844 0,844 0,59 0,500 2666 3333 426 5333	ha 0,97 m3 438 m3 548 m3 76 m3 876 parle projet) ha 1,567 ha 0,97 m3 657 m3 657 m3 8411 m3 1051	ha m3 m3 m3 l/s ha im3 m3 m	3 j 4 j 5 j 6 j 6 j 6 j 6 j 6 j 6 j 6 j 6 j 6
Volume su Test mét en repre	Su vy we supplémentaire 20 me supplémentaire 100 me puplémentaire 100 me	urface active rurface active ruface rufface ruffac	rojeté C10 = résultante = résultante = résultante = résultante = résultante = torésultante = tant (x1,25) = tant (x1,6) = stimé (x2) = tant (x1,6) = stimé (x2) = tant (x1,0) = tant (x1	0,66 0,47 213 267 341 427 24 h) ante + surfa 0,723 0,66 0,47 259 324 415 519	ha m3	0,59 0,50 0,50 225 281 3606 450 450 46mentaire générée 0,844 0,959 0,50 266 3333 426 533	ha 0,91 m3 438 m3 548 m3 764 m3 776 m3 876 parle projet) ha 1,567 ha 0,97 m3 657 m3 657 m3 844 m3 1051 parle projet) ha 1,567	ha m3 m3 m3 l/s ha im3 m3 m	3 j 4 j 5 j 6 j 6 j 6 j 6 j 6 j 6 j 6 j 6 j 6
Volume su Test mét en repre	Su version de la constitución de	urface active rollowers of the total control of the	rojeté C10 = résultant = si résultant = si résultant = si résultant = si résultant = sint (x1,25) = tant (x1,6) = stimé (x2) = stimé (x2) = stimé (x2) = si résultant = si	0,666 0,47 213 267 341 427 24 h) ante + surfa 0,723 0,66 0,47 415 519	ha m3	0,59 0,500 225 2818 360 450 450 450 0,844 0,844 0,59 0,50 266 333 425 533	ha 0,97 m3 438 m3 548 m3 7007 m3 876 parle projet) ha 1,567 m3 625 m3 657 m3 844 m3 1053 parle projet) ha 1,566 ha 0,97 m3 526 m3 657 m3 845 m3 1053	ha m3 m3 m3 l/s ha im3 m3 m	3 4 5 6 6 6 6 6 6 6 6 6
Volume su Test mét en repre	Su vy me supplémentaire ; ume supplémentaire ; ume supplémentaire mou an pplémentaire 100 an pplémentaire 100 an pplémentaire 100 an pplémentaire 100 an viet et de la constant de la cons	urface active rollower 10 ans 20 ans résultant e 10 ans 11/s/ha x surface active rolloume 10 ans résultant e 10 ans 11/s/ha regule (surface x surface active rolloume 10 ans 11/s/ha regule (surface x surface active rolloume 10 ans	rojeté C10 = résultante = résultante = résultante = résultante = résultante = trésultante = trésultante = tant (x1,6) = tant (x1,6) = tant (x1,6) = résultante = résultante = résultante = tant (x1,6) = tant (x1,6) = tant (x1,6) = tant (x1,6) = résultante = résultant	0,66 0,47 213 267 341 427 24 h) 24 h) 25 h 26 h 27 h 27 h 28 h 29 h 29 h 20	ha m3	0,59 0,500 225 2818 3600 450 450 450 66 67 0,844 0,944 0,59 0,50 266 3333 426 533	ha 0,97 m3 438 m3 548 m3 7011 m3 876 ha 1,567 ha 0,97 m3 526 m3 841 m3 1051 ha 1,566 ha 0,97 m3 1,567 ha 0,97 m3 526 ha 0,97 m3 726 ha 1,567 ha 0,97 m3 3,77	ha im3 m3 m3 im3 m3 im3 im3 im3 im3 im3 im	3 j 4 j 5 j 6 j 6 j 6 j 6 j 6 j 6 j 8 j 6 j 8 j 6 j 8 j 6 j 8 j 6 j 8 j 6 j 8 j 6 j 8 j 6 j 8 j 6 j 8 j 6 j 8 j 6 j 8 j 6 j 8 j 6 j 8 j 6 j 8 j 6 j 8 j 6 j 8 j 6 j 8 j 8
Volume su Test mét en repre	Su ve me supplémentaire une supplémentaire ploi an expelémentaire 100 an hode VBR max. pluie nant 100 % du BV Vir Q fuite 1). Coefficient a Su Volume 100 an hode SEVESC pluie 1 nant 100 % du BV Vir Q fuite 1). Coefficient a Su Volume 100 an hode SEVESC pluie 1 nant 100 % du BV Vir Q fuite 1). Coefficient a Su V Volume 200 an hode SEVESC pluie 1 nant 100 % du BV Vir Q fuite 1). Coefficient a Su V Volume 200 and	urface active rollower 20 ans résults 20 ans résults 50 ans résults se 50 ans résults ns résultant e. 50 ans résults ns résultant e. e 10 ans 11/s/rgule (surface surface active rollower 20 ans résults surface active rollower 50 ans résults se 50 ans résults ns résultant e. e. 10 ans 11/s/hargule (surface surface active rollower 10 ans 11/s/hargule (surface active rollower 10 ans 11/s/hargule (surface active rollower 15 ans résultant e. e. 10 ans 11/s/hargule (surface active rollower 15 ans résultant e. e. 10 ans 11/s/hargule (surface active rollower 15 ans résultant e. e. 10 ans 11/s/hargule (surface active rollower 15 ans résultant e. e. 10 ans 11/s/hargule (surface active rollower 15 ans résultant e. e. 10 ans 11/s/hargule (surface active rollower 15 ans résultant e. e. 10 ans 11/s/hargule (surface active rollower 15 ans résultant e. e. 10 ans 11/s/hargule (surface active rollower 15 ans résultant e. e. 10 ans 11/s/hargule (surface active rollower 15 ans résultant e. e. 10 ans 11/s/hargule (surface active rollower 15 ans résultant e. e. 10 ans 11/s/hargule (surface active rollower 15 ans résultant e. e. 10 ans résultant e. 10 ans résultant e. e. 10 ans résultant e. e. 10 ans résultant e. 10 a	rojeté C10 = résultant = ant (x1,25) = tant (x1,6) = stimé (x2) = stim	0,666 0,47 213 267 24 h) ante + surfa 0,723 0,666 0,474 259 324 4155 519 ante + surfa 0,723 0,723 0,723 260 0,723 0,723 0,723 0,723	ha m3	0,59 0,50 225 281 360 450 450 0,844 0,844 0,59 0,50 266 333 426 533 446 0,844 0,094 0,094 0,094 0,844 0,095 0,000 0,00	ha 0,97 m3 438 m3 548 m3 764 m3 876 parle projet) ha 1,567 ha 0,97 m3 652 m3 652 m3 652 m3 1053 parle projet) ha 0,97 m3 1,567 ha 0,97 m3 7,567 ha 0,97 m3 7,567 ha 0,97 m3 7,567 ha 0,97 m3 7,567	ha m3	3 4 5 6 6 6 6 6 6 6 6 6

Tangentielle Ouest (TGO)

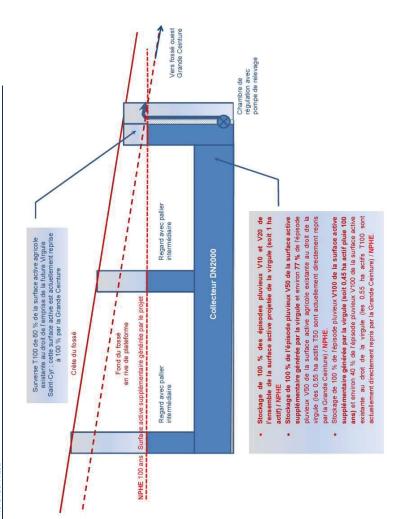
Phase 1

NOTE ASSAINISSEMENT NOTE TECHNIQUE

Dimensionnement Q100 buse à l'exutoire du fossé Est	de la Virgule Saint-Cv	r:		
Application de la formule de Manning Strickler				
Débit de la canalisation (m3/s)	0,267	m3/s		
Pente de la canalisation circulaire (m/m)	0,01	m/m		
Rugosité K au sens de Manning Strickler	70			
Diamètre en m	0,455	m		
Diamètre en mm	455	mm		
Diamètre normalisé m	500	mm		
Rayon hydraulique	0,125			
Surface de la canalisation (m2)	0,196	m2		
Vitesse (m/s)	1,36	m/s		
Vérification débit (m3/s)	0,267455	m3/s		
Vérification de la vitesse	Ok 1m/s<	/<4ms/s		
Vérification de la pente	Ok 2% <i<< td=""><td>1%</td><td></td><td></td></i<<>	1%		
Dimensionnement Q100 buse à l'exutoire du fossé Ou	est de la Virgule Saint	-Cyr:		
Application de la formule de Manning Strickler				
Débit de la canalisation (m3/s)		m3/s		
Débit de la canalisation (m3/s) Pente de la canalisation circulaire (m/m)	0,01	m/m		
Débit de la canalisation (m3/s) Pente de la canalisation circulaire (m/m) Rugosité K au sens de Manning Strickler	0,01 70	m/m		
Débit de la canalisation (m3/s) Pente de la canalisation circulaire (m/m) Rugosité K au sens de Manning Strickler Diamètre en m	0,01 70 0,464	m/m m		
Débit de la canalisation (m3/s) Pente de la canalisation circulaire (m/m) Rugosité K au sens de Manning Strickler Diamètre en m Diamètre en mm	0,01 70 0,464 464	m/m m mm		
Débit de la canalisation (m3/s) Pente de la canalisation circulaire (m/m) Rugosité K au sens de Manning Strickler Diamètre en m	0,01 70 0,464 464	m/m m		
Débit de la canalisation (m3/s) Pente de la canalisation circulaire (m/m) Rugosité Ka uses de Manning Strickler Diamètre en m Diamètre en mm Diamètre normalisé m	0,01 70 0,464 464 500	m/m m mm		
Debit de la canalisation (m3/s) Pente de la canalisation circulaire (m/m) Rugosité Na usens de Manning Strickler Diamètre en m Diamètre en mm Diamètre normalisé m Rayon hydraulique	0,01 70 0,464 464 500	m/m m mm		
Débit de la canalisation (m3/s) Pente de la canalisation circulaire (m/m) Rugosité K au sens de Manning Strickler Diamètre en m Diamètre en mm Diamètre normalisé m	0,01 70 0,464 464 500	m/m m mm		
Debit de la canalisation (m3/s) Pente de la canalisation circulaire (m/m) Rugosite X au sens de Manning Strickler Diamètre en m Diamètre en mm Diamètre normalisé m Rayon hydraulique Surface de la canalisation (m2)	0,01 70 0,464 464 500 0,125 0,196	m/m m mm mm		
Debit de la canalisation (m3/s) Pente de la canalisation circulaire (m/m) Rugositè Ka us ens de Manning Strickler Diamètre en m Diamètre en mm Diamètre normalisé m Rayon hydraulique	0,01 70 0,464 464 500 0,125 0,196	m/m m mm		
Débit de la canalisation (m3/s) Pente de la canalisation circulaire (m/m) Rugosité ka users de Manning Strickler Diamètre en m Diamètre en m Diamètre normalisé m Rayon hydraulique Surface de la canalisation (m2) Vitesse (m/s)	0,01 70 0,464 464 500 0,125 0,196	m/m m mm mm mm m7		
Debit de la canalisation (m3/s) Pente de la canalisation circulaire (m/m) Rugosite X au sens de Manning Strickler Diamètre en m Diamètre en mm Diamètre normalisé m Rayon hydraulique Surface de la canalisation (m2)	0,01 70 0,464 464 500 0,125 0,196	m/m m mm mm mz m/s m/s		

Tangentielle Ouest (TGO) Phase 1

surverse	42%	100%	893	457 m3	436 m3	893 m3	Moyenne volume total BV Virgule projet V100 estimé =
surverse	77%	700%	714	365 m3	349 m3	714 m3	Moyenne volume total BV Virgule projet V50 estimé =
	100%	7001	228	318 m3	240 m3	558 m3	Moyenne volume total BV Virgule projet V20 estimé =
	100%	100%	446	228 m3	218 m3	446 m3	Moyenne volume total BV Virgule projet V10 estimé =
	surface agricole exist.	imperm. suppl.	(m3)	agricole exist.	imperméabilisé suppl.		
	% stockage V moy.	% stockage V moy.	Total	V moy. surface	V moy. surface		
						630,00 m3	
			ités)	nise en charge x 6 ur	(4 m2 au sol sur 3 m de mise en charge x 6 unités)	72,00 m3	Volume stocké au droit des regards =
						48,00 m3	Volume stocké via liaison DN 2000 entre les collecteurs sur 16 ml =
						240,00 m3	Volume stocké par le DN 2000 Est de 80 ml =
						270,00 m3	Volume stocké par le DN2000 Ouest de 90 ml =
							Capacité de rétention des collecteurs DN2000



Phase 1

127/127

1.2. Diagnostic zone humide

Direction régionale et interdépartementale, de l'équipement et de l'aménagement Île-de-France Direction des routes Île-de-France Service de modernisation du réseau

21-23 rue Miollis 75732 PARIS Cedex 15

ÉTUDE DES ZONES HUMIDES POUR LA TANGENTIELLE OUEST (TGO) SUR LA COMMUNE DE VERSAILLES (YVELINES, 78)

Rapport d'étude

AUTEURS DE L'ÉTUDE

Institut d'Écologie Appliquée 16 rue de Gradoux 45800 SAINT-JEAN-DE-BRAYE

Responsable du projet : P. LEGRAND (Directeur d'études)

Réalisation des sondages pédologiques : Nicolas GABORIT et Christophe BACH

Inventaire flore et habitats : Christophe BACH

Rédaction : Christophe BACH

Validation du dossier : Nicolas GABORIT

SOMMAIRE

CHAPITRE I : IDENTIFICATION ET DÉLIMITATION DES ZONES HUMIDES	7
I - CADRAGE DE L'ÉTUDE	
II - CONTEXTE ET DÉFINITION	9
III - ANALYSE BIBLIOGRAPHIQUE	12
IV - RELEVÉS DE TERRAIN	14
A - RELEVÉS DE VÉGÉTATION B - SONDAGES PÉDOLOGIQUES C - ILLUSTRATIONS PHOTOGRAPHIQUES	14 15 18
CHAPITRE II : FICHES DESCRIPTIVES	2
ANNEXE	31

SNC LAVALIN Étude des zones humides pour la Tangentielle Ouest (TGO) Versailles (78) Février 2015 SNC LAVALIN Étude des zones humides pour la Tangentielle Ouest (TGO) Versailles (78) Février 2015

CHAPITRE I : IDENTIFICATION ET DÉLIMITATION DES ZONES HUMIDES

Institut d'Écologie Appliquée Sarl 16 rue de Gradoux - 45800 Saint-Jean-de-Braye Tél: +33(0)2 38 86 90 90 / Fax: + 33(0)2 38 86 90 91 E-mail: contact@iea45.fr / site Web: iea45.fr Institut d'Écologie Appliquée Sarl 16 rue de Gradoux - 45800 Saint-Jean-de-Braye

SNC LAVALIN

I - CADRAGE DE L'ÉTUDE

La première phase du projet de Tangentielle Ouest (TGO) prévoit de relier la gare de Saint-Cyr RER à Saint Germain RER. Concernant le tronçon Sud situé à Versailles (94), le projet de voie ferrée prévoit un tracé traversant la zone présentée sur la photographie aérienne ci-après :

Photo 1 : Périmètre de la zone d'étude

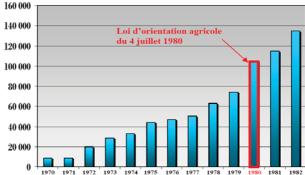
Une étude sur la présence éventuelle de zones humides s'avère nécessaire afin de rendre conforme le projet TGO avec la règlementation en vigueur.

Le groupe d'ingénierie SNC-LAVALIN a sollicité l'Institut d'Ecologie Appliquée pour effectuer une analyse complète (analyse bibliographique, investigations pédologiques, qualification et délimitations de zones humides) sur le potentiel de cette zone.

L'objet de notre mission consiste à :

- identifier et délimiter les éventuelles zones humides au niveau de l'aire d'étude selon les arrêtés du 24 juin 2008 et 1er octobre 2009,
- évaluer les impacts du projet sur les éventuelles zones humides, et le cas échéant, proposer des orientations de mesures proportionnelles aux impacts engendrés par le proiet.

II - CONTEXTE ET DÉFINITION


Les zones humides ont été pendant longtemps considérées comme des lieux insalubres et sans aucune fonction particulière. Leur destruction a souvent été présentée comme un signe de progrès et nombreuses d'entre elles ont disparu durant le XXème siècle un peu partout dans le monde.

Au niveau français, le constat dressé à la fin du XX^{ème} siècle a mis en évidence un fait alarmant : entre 1900 et 1993, l'Hexagone aurait perdu plus des deux tiers de ses zones humides (CCE, 1995 in BARBIER et al. 1997).

À l'origine de cette disparition de masse, deux principaux facteurs peuvent être identifiés : l'urbanisation qui a cherché à conquérir de nouveaux terrains pour installer une population en constante augmentation, et l'agriculture dont le souhait était de pouvoir cultiver des terres jusqu'alors

du 4 juillet 1980 120 000

considérées comme incultes. Sous l'impulsion des pouvoirs publics de l'époque, de nombreux travaux d'assainissement et de drainage ont donc été entrepris, comme en témoigne la figure ci-dessous.

Surfaces annuelles drainées en hectares en France de 1970 à 1982 (CIEPP, 1994)

Face à ce constat inquiétant, en 1971 la communauté internationale décide de se mobiliser et une convention est élaborée : la Convention RAMSAR. Cette dernière, qui rentra en vigueur en 1975 et qui s'attachait principalement à la protection des zones humides d'importance internationale (exemple : la Camargue...), fut le premier texte à définir les zones humides :

"Les zones humides sont des étendues de marais, de fagnes, de tourbières ou d'eaux naturelles ou artificielles, permanentes ou temporaires, où l'eau est stagnante ou courante, douce, saumâtre ou salée, y compris des étendues d'eau marine dont la profondeur à marée basse n'excède pas 6 mètres".

Signataire de cette convention en 1986, la France a quant-à-elle élaboré sa première définition juridique des zones humides au travers de la loi sur l'Eau de 1992 créant l'article L.211-1-I-1 du Code de l'Environnement :

"La prévention des inondations et la préservation des écosystèmes aquatiques, des sites et des zones humides; on entend par zone humide les terrains, exploités ou non, habituellement inondés ou gorgés d'eau douce, salée ou saumâtre de facon permanente ou temporaire ; la végétation, quand elle existe, y est dominée par des plantes hygrophiles pendant au moins une partie de l'année" (Art. 211-1 du Code de l'Environnement).

Si la publication de cet article figure comme une avancée dans la reconnaissance des zones humides, les critères énumérés ne permettaient toujours pas une délimitation suffisamment précise des zones humides. Or, une telle délimitation était indispensable pour déterminer le régime juridique applicable (autorisation et déclaration au titre de la législation sur l'eau...). Pour remédier à ce problème, la loi n° 2005-157 du 23 février 2005 relative au développement des territoires ruraux, dite loi DTR, a donc prévu que les différents critères d'une zone humide soient définis plus précisément.

Ainsi au travers de l'arrêté du 24 juin 2008, modifié par l'arrêté du 1er octobre 2009, codifié dans les articles L. 214-7-1 et R. 211-108 du code de l'environnement, complété par la circulaire du 18 janvier 2010, les facteurs permettant la définition de ces zones ont été identifiés. Le schéma cidessous résume les trois composants de la définition d'une zone humide

Les trois composantes d'une zone humide

À noter que l'identification des zones humides peut reposer sur la présence d'une seule de ses composantes car celles-ci sont liées entre elles : un secteur où il y a présence d'eau une partie de l'année présentera un sol hydromorphe et une végétation hygrophile (à condition que cette dernière puisse se développer). La méthodologie employée pour cette étude est basée sur la reconnaissance de ces différents critères. Elle est détaillée ultérieurement dans ce rapport.

En dehors de la définition et de la caractérisation des zones humides, la législation française s'est aussi attachée à protéger ces espaces. Ainsi l'article R214-1 du Code de l'environnement définit la procédure administrative à réaliser (déclaration, autorisation) selon l'ampleur et la nature des travaux envisagés.

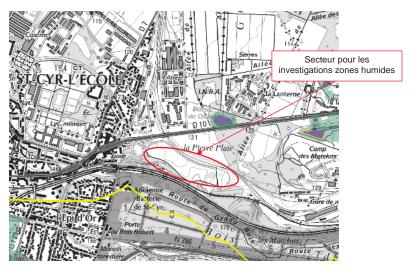
Ont ainsi été fixés les seuils relatifs :

- à l'assèchement et au remblaiement de zones humides : assèchement, mise en eau, imperméabilisation, remblais de zones humides ou de marais, la zone asséchée ou mise en eau étant :
 - Supérieure ou égale à 1 ha → Autorisation
 - Supérieure à 0,1 ha, mais inférieure à 1 ha → Déclaration
- au drainage (hors zones humides): Réalisation de réseaux de drainage permettant le drainage d'une superficie:
 - Supérieure ou égale à 100 ha → Autorisation
- Supérieure à 20 ha mais inférieure à 100 ha → Déclaration

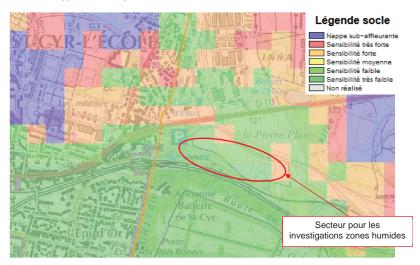
Ce contexte réglementaire a aussi été décliné à une échelle plus fine. En effet, la loi sur l'Eau et les Milieux Aquatiques (LEMA) votée en 1992 a instauré deux documents d'importance majeure dans la gestion de l'eau : le Schéma Directeur d'Aménagement et de Gestion des Eaux (SDAGE) et le Schéma d'Aménagement et de Gestion des Eaux (SAGE).

Le premier fixe les orientations fondamentales d'une gestion équilibrée de la ressource en eau dans l'intérêt général et dans le respect des principes de la loi LEMA, et ce au niveau des six principaux bassins hydrographiques métropolitains : Adour-Garonne, Artois-Picardie, Loire-Bretagne, Rhin-Meuse, Rhône-Méditerranée-Corse et Seine-Normandie. Le second peut s'apparenter à une déclinaison plus locale du premier document en donnant les enjeux et en définissant les actions

nécessaires à l'atteinte des objectifs. Le législateur a donné aux zones humides une valeur juridique particulière en lien avec les décisions administratives et avec les documents d'aménagement du territoire. Ainsi, les programmes et les décisions administratives dans le domaine de l'eau (autorisations et déclarations au titre de l'article L.214-1 et suivants du code de l'environnement...) doivent être compatibles ou rendus compatibles avec les dispositions du SDAGE (article L.212-1 XI du code de l'environnement).

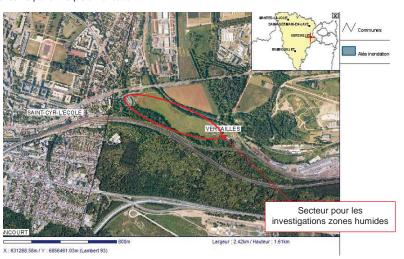

La commune de Versailles (78) dépend du SDAGE Seine-Normandie approuvé par arrêté du préfet coordonnateur le 20 novembre 2009.

III - ANALYSE BIBLIOGRAPHIQUE


La zone d'étude dépend d'une part du SDAGE Seine-Normandie mais également du SAGE Mauldre actuellement en révision et qui doit être soumis à enquête publique du 26 janvier au 15 février 2015.

Enveloppe de zone potentiellement humide de la DRIEE Ile-de-France :

D'après la carte des zones potentiellement humides réalisée par la Direction Régionale et Interdépartementale de l'Environnement et de l'Énergie (DRIEE) de l'Île-de-France, la zone d'investigations n'est localisée dans **aucune enveloppe d'alerte** correspondant la présence potentielle de zones humides.



D'après la carte du BRGM ci-dessous, le secteur d'investigation est concerné par un risque de remontée de nappe faible à moyen.

Atlas des zones inondables des Yvelines :

D'après la cartographie des risques (cf extrait ci-dessous), le secteur d'investigations n'est pas concerné par un risque d'inondation.

IV - RELEVÉS DE TERRAIN

SNC LAVALIN

A - RELEVÉS DE VÉGÉTATION

La zone étudiée se situe sur un milieu de coteau avec une légère cuvette dans la partie basse. Une détermination des types d'habitats présents a été réalisée et a permis d'obtenir la cartographie suivante :

Le point haut est localisé au Sud et correspond à un boisement perturbé pouvant se rattacher à une Ormaie rudérale contenant plusieurs espèces de bois dur telles que l'Érable sycomore (Acer pseudoplatanus) et l'Érable plane (Acer platanoides), le Chêne pédonculé (Quercus robur), le Robinier faux-acacia (Robinia pseudoacacia).

Le milieu de pente et le point bas, au Nord, se caractérisent quant à eux par une prairie de fauche avec ponctuellement des perturbations du sol, lié aux sangliers, rudéralisant le cortège végétal. Les espèces principales sont des graminées non développées à cette époque de l'année (Dactylis glomerata, Poa pratensis...) et d'autres plantes compagnes telles que le Sénecon de Jacobée (Senecio jacobaea), la Grande berce (Heracleum sphondilium), la Carotte sauvage (Daucus carota).

Les espèces et les habitats précités ne sont référencés ni dans la table A (espèces indicatrices de zones humides), ni dans la table B (habitats caractéristiques des zones humides) de l'annexe II de l'arrêté du 24 juin 2008 précisant les critères de définition et de délimitation des zones humides en application des articles L.214-7-1 et R.211-108 du code de l'environnement.

16 rue de Gradoux - 45800 Saint-Jean-de-Braye

B - SONDAGES PÉDOLOGIQUES

1- Méthodologie des sondages pédologiques

Les sondages pédologiques ont été réalisés le 20 janvier 2015.

Les milieux présents ne permettent pas de conclure sur la nature humide du secteur à partir de la seule lecture et analyse de de la composition floristique, puisqu'il s'agit d'un paysage artificialisé et non d'un développement spontané de végétation naturelle.

Conformément aux modalités énoncées dans l'arrêté ministériel du 24 juin 2008 (modifié par l'arrêté du 1er octobre 2009) et la circulaire du 18 ianvier 2010 une expertise des sols s'avère donc nécessaire.

La recherche de zones humides a été réalisée suivant l'analyse du sol. Pour ce faire, des sondages pédologiques ont été effectués à l'aide d'une tarière. Il s'agit alors d'observer la présence d'un sol typique des milieux humides ou d'éventuelles tâches de rouille synonymes d'oxydation du fer et donc de la présence d'eau au moins une partie de l'année.

Définition de l'hydromorphie

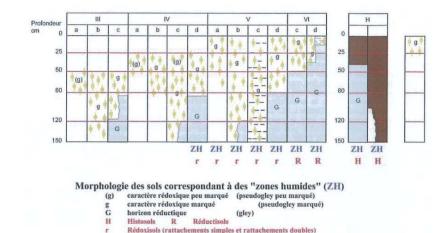
L'hydromorphie est la sensibilité ou tendance à l'engorgement en eau qui accroît les risques d'écoulements superficiels et d'asphyxie les sols (appauvrissement en oxygène) et par voie de conséquence qui empêche le développement des micro-organismes épurateurs aérobies.

Cette privation influe fortement sur deux grands facteurs de la pédogenèse :

- le fer, oxydé en milieu aéré, réduit en milieu asphyxiant ;
- la matière organique, dont la vitesse de décomposition et d'humification sont d'autant plus réduits par l'asphyxie que celle-ci est plus prolongée ou même permanente.

On distingue généralement deux grands types d'hydromorphisme :

- l'hydromorphie temporaire de surface, formant des pseudogley;
- l'hydromorphie profonde permanente. formant des gley.


Selon l'arrêté du 24 juin 2008 modifié par l'arrêté du 1er octobre 2009, les sols de zones humides correspondent:

- « à tous les histosols car ils connaissent un engorgement permanent en eau qui provoque l'accumulation de matières organiques peu ou pas décomposées ;
- à tous les réductisols car ils connaissent un engorgement permanent en eau à faible profondeur se marquant par traits réductiques (décolorations gris-bleuâtre) débutant à moins de 50 cm de profondeur dans le sol :
- aux autres sols caractérisées par des traits rédoxiques (tâches de rouille, nodules de concrétions ferro-manganésiques) débutant à moins de 25 cm de profondeur et se prolongeant ou s'intensifiant en profondeur :
- aux autres sols caractérisés par des traits rédoxiques débutant à moins de 50 cm de profondeur dans le sol, se prolongeant ou s'intensifiant en profondeur, et des traits réductiques apparaissant entre 80 et 120 cm de profondeur. »

Tél: +33(0)2 38 86 90 90 / Fax: + 33(0)2 38 86 90 91 E-mail: contact@iea45.fr / site Web: iea45.fr

Institut d'Écologie Appliquée Sar 16 rue de Gradoux - 45800 Saint-Jean-de-Braye SNC LAVALIN Étude des zones humides pour la Tangentielle Ouest (TGO) Versailles (78) Février 2015

La définition « zone humide » s'applique aux classes d'hydromorphie IVd. Va. Vb. Vc. Vd. VIc. VId et H de la classification ci-après (d'après GEPPA, 1981).

d'après Classes d'hydromorphie du Groupe d'Étude des Problèmes de Pédologie Appliquée (GEPPA, 1981)

La circulaire du 18 janvier 2010 abrogeant la circulaire du 25 juin 2008 mentionne :

« ... Pour permettre l'utilisation du maximum d'informations (bases de données et cartes. pédologiques, floristiques ZNIEFF, d'habitats Natura 2000, etc...) et tenir compte de l'évolution des techniques, il n'est pas donné de prescriptions strictes en matière d'acquisition d'informations, excepté lorsque des investigations de terrain sont nécessaires. Quelle que soit la méthode retenue, celle-ci doit permettre de répondre aux enjeux de la délimitation à une échelle de levés appropriée (1/1 000 à 1/25 000 en règle générale), compte-tenu notamment des seuils de 0,1 ha et 1 ha des régimes de déclaration et d'autorisation au titre de la police de l'eau pour la rubrique 3.3.1.0, relative aux zones humides ... ».

2- Résultat des sondages pédologiques

Il a été réalisé au total 15 sondages pédologiques sur l'ensemble du secteur étudié. Certains sondages sont restés très superficiels car il n'a pas été possible de forer plus en profondeur dans le sol qui était remblavé et compacté avec du granulat.

Chaque sondage a fait l'objet d'un positionnement au GPS, et d'une fiche descriptive (cf. chapitre suivant). L'emplacement des sondages est présenté sur la carte page Erreur! Signet non défini..

Une sécurisation pyrotechnique a été assurée au préalable de chaque sondage (cf rapport en annexe).

Aucun sondage n'a révélé la présence de sol hydromorphe.

Nous pouvons donc conclure en l'absence de zone humide sur la zone prospectée. Selon notre analyse. l'explication repose sur la présence de la tranchée de la voie ferrée très

Institut d'Écologie Appliquée Sarl 16 rue de Gradoux - 45800 Saint-Jean-de-Braye Tél: +33(0)2 38 86 90 90 / Fax: + 33(0)2 38 86 90 91 E-mail: contact@iea45.fr / site Web: iea45.fr

SNC LAVALIN

Versailles (78) Étude des zones humides pour la Tangentielle Ouest (TGO) Février 2015

encaissée en limite Nord du site étudié, qui fait office de drain et d'exutoire des eaux accumulées dans le sol au niveau du secteur d'étude.

Par ailleurs, nous avons également constaté que la zone est constituée d'un sol très perturbé par la présence de nombreux remblais sur notamment la partie Nord-Ouest (sablons, gravat avec de la terre végétale au-dessus).

Les sols étudiés ne présentent pas, a priori, de caractéristiques calcaires.

Ce qu'il faut retenir :

Institut d'Écologie Appliquée Sarl

16 rue de Gradoux - 45800 Saint-Jean-de-Braye

Conformément aux critères pédologiques définissant une zone humide (circulaire du 18 ianvier 2010 en application des articles L.214-7-1 et R.211-108 du Code de l'Environnement), aucune zone humide n'a été identifiée sur la zone d'étude. L'absence de zone humide est, selon notre analyse du site, liée à la présence de la tranchée de la voie ferrée au Nord qui draine les sols.

Conformément aux articles L.214-1 à L.214-11 du code de l'environnement, le projet la Tangentielle Ouest située proche de la gare de Saint-Cyr-l'Ecole n'est pas concerné par la rubrique de la nomenclature « Loi sur l'eau » suivante :

- 3.3.1.0. Assèchement, mise en eau, imperméabilisation, remblais de zones humides ou de marais, la zone asséchée ou mise en eau étant :
 - Supérieure ou égale à 1 ha : AUTORISATION,
 - Supérieure à 0,1 ha, mais inférieure à 1 ha : DECLARATION.

Tél: +33(0)2 38 86 90 90 / Fax: + 33(0)2 38 86 90 91

SNC LAVALIN Étude des zones humides pour la Tangentielle Ouest (TGO) Versailles (78) Février 2015

C-ILLUSTRATIONS PHOTOGRAPHIQUES

Photo 2 : Prairie de fauche de milieu de pente

Photo 3 : Ormaie rudérale en point haut

Institut d'Écologie Appliquée Sarl

16 rue de Gradoux - 45800 Saint-Jean-de-Braye

SNC LAVALIN Étude des zones humides pour la Tangentielle Ouest (TGO)

Versailles (78) Février 2015

Institut d'Écologie Appliquée Sarl 16 rue de Gradoux - 45800 Saint-Jean-de-Braye

Tél:+33(0)2 38 86 90 90 / Fax:+33(0)2 38 86 90 91 E-mail: <u>contact@lea45.fr</u> / site Web: <u>lea45.fr</u>

SNC LAVALIN Étude des zones humides pour la Tangentielle Ouest (TGO) Versailles (78) Février 2015

Institut d'Écologie Appliquée Sarl 16 rue de Gradoux - 45800 Saint-Jean-de-Braye

Tél: +33(0)2 38 86 90 90 / Fax: + 33(0)2 38 86 90 91 E-mail: contact@iea45.fr / site Web: iea45.fr

SNC LAVALIN Étude des zones humides pour la Tangentielle Ouest (TGO)

Versailles (78) Février 2015

SNC LAVALIN Étude des zones humides pour la Tangentielle Ouest (TGO)

Versailles (78) Février 2015

CHAPITRE II: FICHES DESCRIPTIVES

Institut d'Écologie Appliquée Sarl 16 rue de Gradoux - 45800 Saint-Jean-de-Braye

Tél: +33(0)2 38 86 90 90 / Fax: + 33(0)2 38 86 90 91 E-mail: contact@iea45.fr / site Web: iea45.fr

Institut d'Écologie Appliquée Sarl 16 rue de Gradoux - 45800 Saint-Jean-de-Braye

22

Tél: +33(0)2 38 86 90 90 / Fax: +33(0)2 38 86 90 91 E-mail: contact@iea45.fr / site Web: iea45.fr

Fiche de profil pédologique :

Opérateur : NG - CB Localisation: Versailles (94) Affaire: CT1204 Date: 20 jan. 2015

N° du profil : 1 Coordonnées GPS: N4847983 / E00204608 Photo:

Classe de sol GEPPA 1981 : III Zone Humide: NON

Prof :	Couleur :	Texture :	Structure	Traces d'hydro	Remarque
0-10	Brun clair	Argileux	Compacte	Non	Terre végétale
10-50	0-50 Brun clair Argileux		Compacte	Non	Remblai

Opérateur : NG - CB Localisation: Versailles (94) Affaire : CT1204 Date: 20 jan. 2015

N° du profil : 2 Coordonnées GPS: N4848016 / E00204615 Photo:

Classe de sol GEPPA 1981 : III

Institut d'Écologie Appliquée Sarl

16 rue de Gradoux - 45800 Saint-Jean-de-Brave

Zone Humide: NON

Prof :	Couleur :	Texture :	Structure	Traces d'hydro	Remarque
0-25	Brun clair	Argileux	Compacte	Non	Terre végétale
25-60 Brun clair Argileux		Argileux	Compacte	Non	Terre végétale

Sableuse Compacte Limoneuse Particulaire (sableux) Argileuse Grumeleuse

Tél: +33(0)2 38 86 90 90 / Fax: + 33(0)2 38 86 90 91 E-mail: contact@iea45.fr / site Web: iea45.fr

Fiche de profil pédologique : INSTITUT d'ÉCOLOGIE APPLIQUE

Opérateur : NG - CB Localisation: Versailles (94) Affaire: CT1204 Date: 20 jan. 2015

N° du profil : 3 Coordonnées GPS: N4848008 / E00204677 Photo:

Classe de sol GEPPA 1981 : III Zone Humide: NON

Prof :	Couleur :	Texture :	Structure	Traces d'hydro	Remarque
0-25	Brun clair	Argilo- sableux	Compacte	Non	Terre végétale
25-50	Brun clair	Argilo- sableux	Compacte	Non	Terre végétale
50-70	Brun clair	Argilo- sableux	Compacte	Non	Présence de la nappe

Opérateur : NG - CB Localisation: Versailles (94) Affaire: CT1204 Date: 20 jan. 2015

N° du profil: 4 Coordonnées GPS: N4847976 / E00204660 Photo

Classe de sol GEPPA 1981 : III Zone Humide: NON

Prof :	Couleur :	Texture :	Structure	Traces d'hydro	Remarque
0-25	Brun clair	Argilo- sableux	Compacte	Non	Terre végétale
25-50	Brun clair	Argilo- sableux	Compacte	Non	Terre végétale

INSTITUT d'ÉCOLOGIE APPLIQUÉI

Fiche de profil pédologique :

<u>Opérateur</u>: NG - CB <u>Localisation</u>: Versailles (94) <u>Affaire</u>: CT1204 <u>Date</u>: 20 jan. 2015

 N° du profil : 5 Coordonnées GPS : N4847962 / E00204714 Photo :

Classe de sol GEPPA 1981 : III Zone Humide : NON

Prof :	Couleur :	Texture :	Structure	Traces d'hydro	Remarque
0-25	Brun clair	Argilo- sableux	Compacte	Non	Terre végétale
25-50	Brun clair	Argilo- sableux	Compacte	Non	Terre végétale
50-70	Brun clair	Argileux	Compacte	Oui	Quelques traces mineures

 Opérateur : NG - CB
 Localisation : Versailles (94)
 Affaire : CT1204
 Date : 20 jan. 2015

 N° du profil : 6
 Coordonnées GPS : N4847997 / E00204724
 Photo :

Classe de sol GEPPA 1981 : III Zone Humide : NON

Prof :	Couleur :	Texture :	Structure	Traces d'hydro	Remarque
0-25	Brun - clair	Argilo- sableux	Compacte	Non	Terre végétale
25-50	Brun - clair	Argilo- sableux	Compacte	Non	Terre végétale
50-70	Brun clair	Argileux	Compacte	Non	(>70 cm : présence de la nappe)

Sableuse Limoneuse Argileuse

Compacte
Se Particulaire (sableux)
Grumeleuse
(Grumeaux)

de des zones namides pour la rangemiene Guest (100

Fiche de profil pédologique :

<u>Opérateur</u>: NG - CB <u>Localisation</u>: Versailles (94) <u>Affaire</u>: CT1204 <u>Date</u>: 20 jan. 2015

N° du profil : **7** Coordonnées GPS : N4847957 / E00204724 Photo :

Classe de sol GEPPA 1981 : III Zone Humide : NON

	00. 02		20110 114111140		
Prof :	Couleur :	Texture :	Structure	Traces d'hydro	Remarque
0-25	Brun - clair	Argilo- sableux	Compacte	Non	Terre végétale
25-50	Brun - clair	Argileux	Compacte	Non	Remblai

<u>Opérateur</u>: NG - CB <u>Localisation</u>: Versailles (94) <u>Affaire</u>: CT1204 <u>Date</u>: 20 jan. 2015

N° du profil: 8 Coordonnées GPS: N4847939 / E00204839 Photo:

Classe de sol GEPPA 1981 : III Zone Humide : NON

0.0000 00	00. 02		20110 114111140		
Prof :	Couleur :	Texture :	Structure	Traces d'hydro	Remarque
0-25	Brun clair	Sableux	Particulaire	Non	Terre végétale
25-50	Brun clair	Sableux	Particulaire	Non	

Sableuse Limoneuse Argileuse Compacte
Particulaire (sableux)
Grumeleuse
(Grumeaux)

Fiche de profil pédologique : INSTITUT d'ÉCOLOGIE APPLIQUE

Opérateur : NG - CB Localisation: Versailles (94) Affaire: CT1204 Date: 20 jan. 2015

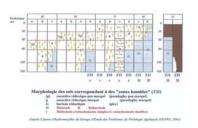
N° du profil : 9 Coordonnées GPS: N4847899 / E00204856 Photo

Classe de sol GEPPA 1981 : III Zone Humide: NON

Prof :	Couleur :	Texture :	Structure	Traces d'hydro	Remarque
0-25	Brun	Sableux	Particulaire	Non	Terre végétale
25-50	Brun clair	Sableux	Particulaire	Non	
50+	Brun clair	Sableux	Particulaire	Non	

Opérateur : NG - CB Localisation: Versailles (94) Affaire: CT1204 Date: 20 jan. 2015

N° du profil: 10 Coordonnées GPS: N4847893 / E00204793 Photo


> Compacte Particulaire (sableux)

Grumeleuse

Classe de sol GEPPA 1981 : III Zone Humide: NON

Prof :	Couleur :	Texture :	Structure	Traces d'hydro	Remarque
0-25	Brun clair	Sableux	Particulaire	Non	Terre végétale
25-50	Brun clair	Sableux	Particulaire	Non	Terre végétale
50-70	Brun clair	Très sableux	Particulaire	Non	Présence de la nappe

Sableuse Limoneuse Argileuse

Étude des zones humides pour la Tangentielle Ouest (TGO)

Fiche de profil pédologique : INSTITUT d'ÉCOLOGIE APPLIQUE

Opérateur : NG - CB Localisation: Versailles (94) Affaire: CT1204 Date: 20 jan. 2015

N° du profil : 11 Coordonnées GPS: N4847910 / E00204766 Photo:

Classe de sol GEPPA 1981 : III Zone Humide: NON

Prof :	Couleur :	Texture :	Structure	Traces d'hydro	Remarque
0-25	Brun clair	Sableux	Particulaire	Non	
25-50	Brun clair	Sableux	Particulaire	Non	
50-70	Brun clair	Très sableux	Particulaire	Non	

Opérateur : NG - CB Localisation: Versailles (94) Affaire: CT1204 Date: 20 jan. 2015

N° du profil : 12 Coordonnées GPS: N4847932 / E00204761 Photo:

Classe de sol GEPPA 1981 : III Zone Humide: NON

2010 1411140 . 11011						
Prof :	Couleur :	Texture :	Structure	Traces d'hydro	Remarque	
0-25	Brun clair	Sableux	Particulaire	Non	Terre végétale	
25-35	Brun clair	Sableux	Particulaire	Non	Terre végétale	
0-25	Brun clair	Sableux	Particulaire	Non	Terre végétale	

Sableuse Limoneuse Argileuse

Compacte Particulaire (sableux) Grumeleuse

28

INSTITUT d'ÉCOLOGIE APPLIQUÉI

Fiche de profil pédologique :

Opérateur : NG - CB Localisation: Versailles (94) Affaire: CT1204 Date: 20 jan. 2015

N° du profil: 13 Coordonnées GPS: N4847914 / E00204736 Photo:

Classe de sol GEPPA 1981 : III Zone Humide: Non

Prof :	Couleur :	Texture :	Structure	Traces d'hydro	Remarque
0-25	Brun clair	Sableux	Particulaire	Non	Terre végétale
25-35	Brun clair	Sableux	Particulaire	Non	Remblai
			Impénétrable		

Opérateur : NG - CB Localisation: Versailles (94) Affaire: CT1204 Date: 20 jan. 2015

N° du profil : 14 Coordonnées GPS: N4847943 / E00204675 Photo

Classe de sol GEPPA 1981 : III Zone Humide: NON

Prof :	Couleur :	Texture :	Structure	Traces d'hydro	Remarque				
0-25	Brun clair	Argileux	Compacte	Non	Terre végétale				
25-50	Brun clair	Argileux	Compacte	Non	Remblai				
			Impénétrable						

Sableuse Limoneuse Argileuse

Compacte Particulaire (sableux) Grumeleuse

INSTITUT d'ÉCOLOGIE APPLIQUÉI

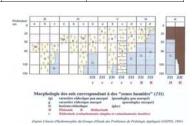
Fiche de profil pédologique :

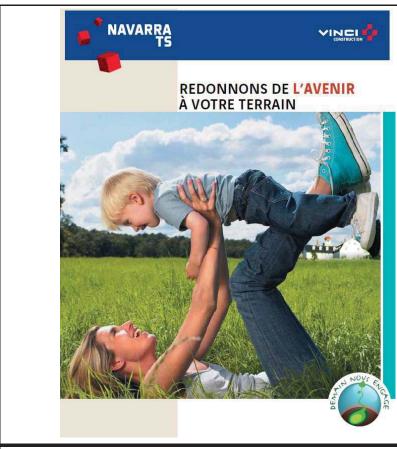
Opérateur : NG - CB Affaire : CT1204 Localisation: Versailles (94) Date: 20 jan. 2015

N° du profil : 15 Coordonnées GPS: N4847960 / E00204611 Photo:

Classe de sol GEPPA 1981 : III Zone Humide: NON

Prof :	Couleur :	Texture :	Structure	Traces d'hydro	Remarque
0-25	Brun clair	Argilo- sableux	Compacte	Non	Terre végétale
25-50	Brun clair	Argilo- sableux	Compacte	Non	Terre végétale
50+	Brun clair	Argileux	Compacte	Non	


Opérateur : Localisation: Affaire: Date: N° du profil: Coordonnées GPS: Photo:


Classe de sol GEPPA 1981 : Zone Humide :

Prof :	Couleur :	Texture :	Structure	Traces d'hydro	Remarque

Sableuse Limoneuse Argileuse

Compacte Particulaire (sableux) Grumeleuse

TGO-IEA Saint Cyr l'Ecole (78) Sécurisation pyrotechnique

Date : 2	3/01/15		COMPTE-RENDU D'INTERVENTION								
1	Version	initiale	nitiale C.CLEMENCEAU M.DAMGE								
Indice	Ob (Les modifications p précédent sont matér gauche d	ar rapport à l'indice ialisées par un trait à	Rédaction	Vérification	Approbation						

NAVARRA TS

18 avenue Gustave Eiffel - 33 600 PESSAC Tél.: 05.57.26.69.20 - Fax: 05.57.26.69.21

www.navarrats.com

secretariat.nts @vinci-construction-terrassement.com

Indice: 1

Page 3 sur 6

TGO Saint-Cyr L'Ecole (78) - IEA

Sécurisation pyrotechnique

Indice: 1 Page 3 sur 6

SOMMAIRE

1	ZONE D'INTERVENTION	3
2	PLANNING D'INTERVENTION ET MOYENS MATERIELS SUR	
	E	4
3	SITUATION GEOGRAPHIQUE DE SECURISATION	4
4	COMPTE-RENDU DE L'INTERVENTION	5
5	SYNTHESE DE L'INTERVENTION	6

NAVARRA TS 18 Avenue Gustave Eiffel 33600 PESSAC

Institut d'Écologie Appliquée Sarl 16 rue de Gradoux - 45800 Saint-Jean-de-Braye Tel: 05 57 26 69 20 Fax: 05 57 26 69 21

33

N° SIRET : 487 872 442 000 24 N° TVA INTRA : FR 524 878 724 42

Tél: +33(0)2 38 86 90 90 / Fax: +33(0)2 38 86 90 91 E-mail: contact@iea45.fr / site Web: jea45.fr

1) ZONE D'INTERVENTION

L'intervention a consisté à réaliser une sécurisation pyrotechnique pour le compte de l'Institut Ecologique Appliqué IEA sur une parcelle située au sein du site de l'IRA sur la commune de Saint Cyr l'Ecole, dans le cadre du chantier de la future Tangentielle Ouest (TGO).

Le plan ci-dessous présente la localisation exacte de la parcelle.

En raison de l'historique pyrotechnique du site, il est nécessaire de sécuriser tous les travaux qui ont ou auront une action intrusive dans le sol.

qui oni ou auroni une action inti	usive daris le soi.	
NAVARRA TS	Tel: 05 57 26 69 20	N° SIRET : 487 872 442 000 24
18 Avenue Gustave Eiffel	Fax: 05 57 26 69 21	N° TVA INTRA : FR 524 878 724 42
33600 PESSAC		

TGO Saint-Cyr L'Ecole (78) - IEA

Sécurisation pyrotechnique

Indice: 1 Page 4 sur 6

2) PLANNING D'INTERVENTION ET MOYENS MATERIELS SUR SITE

Nous sommes intervenus le 20/01/2015 aux côtés de la société IEA pour la sécurisation de sondage d'étude des sols.

Personnel sur site

- 1 opérateur en dépollution pyrotechnique, Monsieur Christian Clémenceau

Moyens sur site

- 1 fourgon équipé
- 1 détecteur magnétométrique à lecture directe (mono-sonde)

Marque: Institut Dr Forster Modèle : Ferex 4032 Sonde: 420 mm

SITUATION GEOGRAPHIQUE DE SECURISATION

Le programme d'investigations de IEA concerne la réalisation de neuf sondages manuels à la tarière prévus sur une profondeur de – 1.5 mètres et répartis comme suit :

NAVARRA TS	
18 Avenue Gustave Eiffel	
33600 PESSAC	

Tel: 05 57 26 69 20 Fax: 05 57 26 69 21 N° SIRET: 487 872 442 000 24 N° TVA INTRA: FR 524 878 724 42

Tél: +33(0)2 38 86 90 90 / Fax: + 33(0)2 38 86 90 91 E-mail: contact@iea45.fr / site Web: iea45.fr

SNC LAVALIN Étude des zones humides pour la Tangentielle Ouest (TGO) Versailles (78) Février 2015

TGO Saint-Cyr L'Ecole (78) - IEA

Sécurisation pyrotechnique

Indice: 1 Page 5 sur 6

3) COMPTE-RENDU DE L'INTERVENTION

Implantation des neufs points de forages par IEA.

Sécurisation pyrotechnique des sondages à la tarière manuelle et détection jusqu'à 1.50 mètres de profondeur.

NAVARRA TS 18 Avenue Gustave Eiffel 33600 PESSAC

Tel: 05 57 26 69 20 Fax: 05 57 26 69 21

N° SIRET: 487 872 442 000 24 N° TVA INTRA: FR 524 878 724 42

TGO Saint-Cyr L'Ecole (78) - IEA

Sécurisation pyrotechnique

Indice: 1 Page 6 sur 6

4) SYNTHESE DE L'INTERVENTION

L'intervention s'est déroulée sans incident. La totalité des forages manuels a pu être réalisée avec une sécurisation pyrotechnique.

Toutefois, une activité de bombardement a été identifiée, notamment en sous-bois.

Nous précisons que cette sécurisation ne concerne que des points de fouilles ponctuels et ne peut en aucun cas constituer une validation d'une excavation de fouille ultérieure conséquente.

NAVARRA TS	Tel: 05 57 26 69 20	N° SIRET : 487 872 442 000 24
18 Avenue Gustave Eiffel 33600 PESSAC	Fax: 05 57 26 69 21	N° TVA INTRA : FR 524 878 724 42
33000 PESSAC		

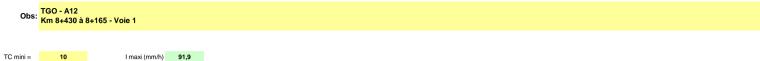
2. ANNEXE 2 : PÉRIMÈTRE SNCF RÉSEAU

2.1. Dimensionnement des bassins

TGO – ELEMENTS HDYRAULIQUES COMPLÉMENTAIRES

Voici les éléments complémentaires pour l'élaboration du dossier Loi sur l'Eau et l'achat d'emprises foncières.

1. Reprise des volumes des bassins de rétention


Les hypothèses de calculs qui ont été prises sont les suivantes :

- Débit de fuite en sortie des bassins de rétention : Q_{fuite} = 10 L/s (pour assurer la maintenabilité du drainage)
- Hauteur moyenne du bassin de rétention : 1,5 m
- Comparaison entre un calcul de volume utile de rétention entre :
 - o La méthode des pluies (MP) au T = 10 ans (Référentiel SNCF)
 - o La méthode des volumes (MV) au T = 20 ans (Collectivités territoriales)

Localisation Km	Surface (km²)	Coefficient de ruissellement	Temps de concentration (mn)	Volume utile de rétention MP (T10) MV (T20) (m³)	Surface utile (m²)	Surface d'acquisition foncière à acquérir (m²)	Exutoire	Possibilité d'infiltration
RD10 4+890 V1	0,208	0,26	15	1963 1420	982	/	Réseau EP St-Cyr- l'Ecole	?
PN1-2, PN 1-3 6+754 V2	0,166	0,35	26	3 080 2 556	2 053	4 000	Ru de Gally	Oui A partir de 6 m de profondeur : limons en surface (1,3 cm/h) puis calcaire à partir de 6 m
<u>A12</u> 8+090 V1	0,035	0,31	9	520 418	347	600	Ru de Chèvreloup	Oui A partir de 3,90 m : en surface marnes puis calcaire à partir de 3,90 m

2.2. Notes de calculs

PROJET

8 600

Coefficients de Montana : Paris Montsouris

Pas de calcul entre 2 PT (m)

Q100/Q10 pour les BVN

Rapport Q100/Q10 BV <2 km2 : 2

Rapport Q100/Q10 BV >= 2 km2 : 2

Coefficients de ruissellement : PK début (m) : -

10

Talus: 0,35 PK fin (m): - 8165
1 2 3 4 5 6 7 8 9 ### 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

					0,002														0,50						_
				Longueur	Pente du	Larg	eur (m)				Q Rat	Coe	ef C	Surfa	ice (km²)					CALCUL			BV	N	
N° Tronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL		Nature du DL	Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	cumule	ensité m/h) Somme des TC Unit		s c	TC T Reto	ır
1	-8600	-8590	10	10	0,015	4,50	3,00	58	F	BPB M60-15 maxi	0,001	0,65	0,65	0,000075	0,000075	0,83	0,000	0,02	0,13	10,00	92 0,83				
2	-8590	-8580	10	20	0,015	4,50	3,00	58	F	BPB M60-15 maxi	0,002	0,65	0,65	0,000075	0,000150	0,83	0,000	0,02	0,26	10,00	92 1,67				
3	-8580	-8570	10	30	0,015	4,50	3,00	58	F	BPB M60-15 maxi	0,004	0,65	0,65	0,000075	0,000225	0,64	0,001	0,02	0,39	10,00	92 2,31				
4	-8570	-8560	10	40	0,015	4,50	3,00	58	F	BPB M60-15 maxi	0,005	0,65	0,65	0,000075	0,000300	0,43	0,001	0,02	0,52	10,00	92 2,74				
5	-8560	-8550	10	50	0,015	4,50	3,00	58	F	BPB M60-15 maxi	0,006	0,65	0,65	0,000075	0,000375	0,32	0,001	0,02	0,65	10,00	92 3,06				
6	-8550	-8540	10	60	0,015	4,50	3,00	58	F	BPB M60-15 maxi	0,007	0,65	0,65	0,000075	0,000450	0,26	0,001	0,02	0,78	10,00	92 3,32				
7	-8540	-8530	10	70	0,015	4,50	3,00	58	F	BPB M60-15 maxi	0,009	0,65	0,65	0,000075	0,000525	0,21	0,001	0,02	0,91	10,00	92 3,53				
8	-8530	-8520	10	80	0,015	4,50	3,00	58	F	BPB M60-15 maxi	0,010	0,65	0,65	0,000075	0,000600	0,18	0,001	0,02	1,04	10,00	92 3,72				
9	-8520	-8510	10	90	0,015	4,50	3,00	58	F	BPB M60-15 maxi	0,011	0,65	0,65	0,000075	0,000675	0,16	0,002	0,02	1,16	10,00	92 3,88				
10	-8510	-8500	10	100	0,015	4,50	3,00	58		BPB M60-15 maxi	0,012	0,65	0,65	0,000075	0,000750	0,14	0,002	0,02	1,29	10,00	92 4,02				
11	-8500	-8490	10	110	0,015	4,50	3,00	58	F	BPB M60-15 maxi	0,014	0,65	0,65	0,000075	0,000825	0,13	0,002	0,02	1,42	10,00	92 4,15				
12	-8490	-8480	10	120	0,015	4,50	3,00	58	F	BPB M60-15 maxi	0,015	0,65	0,65	0,000075	0,000900	0,12	0,002	0,02	1,55	10,00	92 4,27				
13	-8480	-8470	10	130	0,015	4,50	3,00	58		BPB M60-15 maxi	0,016	0,65	0,65	0,000075	0,000975	0,11	0,002	0,06	0,69	10,00	92 4,37				
14	-8470	-8460	10	140	0,015	4,50	3,00	58	F	BPB M60-15 maxi	0,017	0,65	0,65	0,000075	0,001050	0,24	0,002	0,06	0,74	10,00	92 4,62				
15	-8460	-8450	10	150	0,015	4,50	3,00	58	F	BPB M60-15 maxi	0,019	0,65	0,65	0,000075	0,001125	0,22	0,003	0,06	0,80	10,00	92 4,84				
16	-8450	-8440	10	160	0,015	4,50	3,00	58	F	BPB M60-15 maxi	0,020	0,65	0,65	0,000075	0,001200	0,21	0,003	0,06	0,85	10,00	92 5,05				
17	-8440	-8430	10	170	0,015	4,50	3,00	58	F	BPB M60-15 maxi	0,021	0,65	0,65	0,000075	0,001275	0,20	0,003	0,06	0,90	10,00	92 5,25				
18	-8430	-8420	10	180	0,015	4,50	3,00	58		BPB M60-15 maxi	0,022	0,65	0,65	0,000075	0,001350	0,18	0,003	0,06	0,95	10,00	92 5,43				
19	-8420	-8410	10	190	0,015	4,50	3,00	58		BPB M60-15 maxi	0,024	0,65	0,65	0,000075	0,001425	0,17	0,003	0,06	1,01	10,00	92 5,61				
20	-8410	-8400	10	200	0,015	4,50	3,00	58	F	BPB M60-15 maxi	0,025	0,65	0,65	0,000075	0,001500	0,17	0,003	0,06	1,06	10,00	92 5,77				
21	-8400	-8390	10	210	0,015	4,50	3,00	58	F	BPB M60-15 maxi	0,026	0,65	0,65	0,000075	0,001575	0,16	0,004	0,06	1,11	10,00	92 5,93				
22	-8390	-8380	10	220	0,015	4,50	3,00	58		BPB M60-15 maxi	0,027	0,65	0,65	0,000075	0,001650	0,15	0,004	0,06	1,16	10,00	92 6,08				
23	-8380	-8370	10	230	0,015	4,50	3,00	58		BPB M60-15 maxi	0,029	0,65	0,65	0,000075	0,001725	0,14	0,004	0,06	1,22	10,00	92 6,22234	19			
24	-8370	-8360	10	240	0,015	4,50	3,00	58	F	BPB M60-15 maxi	0,030	0,65	0,65	0,000075	0,001800	0,14	0,004	0,08	0,98	10,00	92 6,3592	.9			
25	-8360	-8350	10	250	0,015	4,50	3,00	58		BPB M60-15 maxi	0,031	0,65	0,65	0,000075	0,001875	0,17	0,004	0,08	1,02	10,00	92 6,52931	6			
26	-8350	-8340	10	260	0,015	4,50	3,00	58		BPB M60-15 maxi	0,032	0,65	0,65	0,000075	0,001950	0,16	0,004	0,08	1,06	10,00	92 6,69254	1			
27	-8340	-8330	10	270	0,015	4,50	3,00	58		BPB M60-15 maxi	0,034	0,65	0,65	0,000075	0,002025	0,16	0,005	0,08	1,10	10,00	92 6,84948	18			
28	-8330	-8320	10	280	0,015	4,50	3,00	58		BPB M60-15 maxi	0,035	0,65	0,65	0,000075	0,002100	0,15	0,005	0,08	1,14	10,00	92 7,00075	i2			
29	-8320	-8310	10	290	0,015	4,50	3,00	58		BPB M60-15 maxi	0,036	0,65	0,65	0,000075	0,002175	0,15	0,005	0,08	1,18	10,00	92 7,14661	3			
30	-8310	-8300	10	300	0,015	4,50	3,00	58		BPB M60-15 maxi	0,037	0,65	0,65	0,000075	0,002250	0,14	0,005	0,09	1,06	10,00	92 7,28744	15			
31	-8300	-8290	10	310	0,015	4,50	3,00	58		BPB M60-15 maxi	0,039	0,65	0,65	0,000075	0,002325	0,16	0,005	0,09	1,10	10,00	92 7,44425	9			
32	-8290	-8280	10	320	0,015	4,50	3,00	58		BPB M60-15 maxi	0,040	0,65	0,65	0,000075	0,002400	0,15	0,005	0,09	1,13	10,00	92 7,59601	5			
33	-8280	-8270	10	330	0,015	4,50	3,00	58		BPB M60-15 maxi	0,041	0,65	0,65	0,000075	0,002475	0,15	0,006	0,09	1,17	10,00	92 7,74302	18			
34	-8270	-8260	10	340	0,015	4,50	3,00	58		BPB M60-15 maxi	0,042	0,65	0,65	0,000075	0,002550	0,14	0,006	0,09	1,20	10,00	92 7,88570	19			
35	-8260	-8250	10	350	0,015	4,50	3,00	58		BPB M60-15 maxi	0,044	0,65	0,65	0,000075	0,002625	0,14	0,006	0,09	1,24	10,00	92 8,02419	14			
36	-8250	-8240	10	360	0,015	4,50	3,00	58	JF	BPB M60-15 maxi	0,045	0,65	0,65	0,000075	0,002700	0,13	0,006	0,10	1,13	10,00	92 8,15872	22			

PROJET

Obs: TGO - A12 Km 8+600 à 8+165 - Voie 2

TC mini = I maxi (mm/h) 110,5

Coefficients de Montana : **Paris Montsouris**

211

0,361

Montana pour T = a1 =

Pour 25 min<Tc<6 heures : 823 0,784

Pas de calcul entre 2 PT (m) 10

Q100/Q10 pour les BVN

Rapport Q100/Q10 BV <2 km2 : Rapport Q100/Q10 BV >= 2 km2 :

Coefficients de ruissellement :

Pour Tc < 25 min :

PK début (m): Plateforme : 0,85

Talus : 0,35

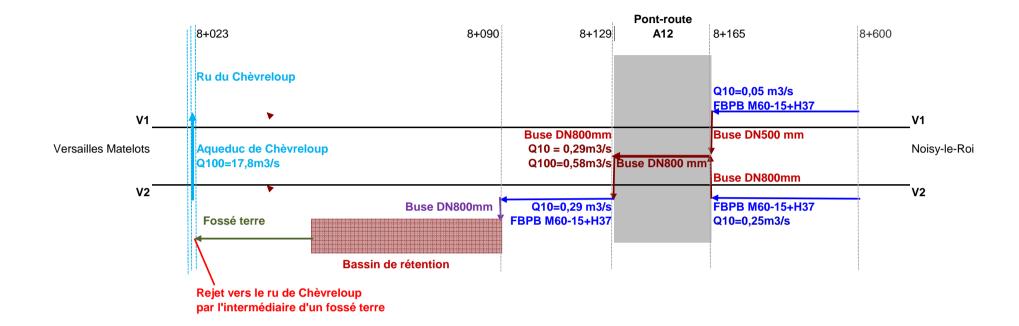
PK fin (m): 8 165

8 600

27 28 29 30 31

					0,002	Large	eur (m)		1			Coef C Surface (km²)						0,50	CALCUL		Ī		BVN		
N° Tronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	Longueur cumulée (m)	Pente du tronçon (m/m)	Plateforme	Talus	Code du DL		Nature du DL	Q Rat Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23	He(m)	V (m/s)	TC Calc cumulé	ntensité	Somme des TC	Q S	С то	T Retour
				` '	(- /						(/					(11111)	Cible			(min)	(mm/h)	Unit	pointe		Retour
1	-8600	-8590	10	10	0,015	4,50	5,00	57	l	FBPB M60-15 mini+H37	0,002	0,59	0,59	0,000095	0,000095	0.83	0.000	0.02	0,20	6.00	111	0.83			
2	-8590	-8580	10	20	0,015	4,50	5,00	57		FBPB M60-15 mini+H37	0,151	0,59	0,20	0,000095	0,024190	0,83	0.021	0,25	1.65	6.00	111	1.67	0,1473 0,024	0,2 6	10
3	-8580	-8570	10	30	0,015	4,50	5,00	57		FBPB M60-15 mini+H37	0,152	0,59	0,20	0,000095	0,024285	0.10	0.021	0,25	1.66	6.00	111	1.77	.i.f		
4	-8570	-8560	10	40	0,015	4,50	5,00	57		FBPB M60-15 mini+H37	0,154	0,59	0,21	0,000095	0,024380	0,10	0,021	0,25	1,68	6,00	111	1,87			
5	-8560	-8550	10	50	0,015	4,50	5,00	57		FBPB M60-15 mini+H37	0,156	0,59	0,21	0,000095	0,024475	0,10	0,021	0,25	1,70	6,00	111	1,97			
6	-8550	-8540	10	60	0,015	4,50	5,00	57		FBPB M60-15 mini+H37	0,158	0,59	0,21	0,000095	0,024570	0,10	0,021	0,26	1,64	6,00	111	2,07			
7	-8540	-8530	10	70	0,015	4,50	5,00	57		FBPB M60-15 mini+H37	0,159	0,59	0,21	0,000095	0,024665	0,10	0,022	0,26	1,66	6,00	111	2,17			
8	-8530	-8520	10	80	0,015	4,50	5,00	57		FBPB M60-15 mini+H37	0,161	0,59	0,21	0,000095	0,024760	0,10	0,022	0,26	1,68	6,00	111	2,27			
9	-8520	-8510	10	90	0,015	4,50	5,00	57		FBPB M60-15 mini+H37	0,163	0,59	0,21	0,000095	0,024855	0,10	0,022	0,26	1,69	6,00	111	2,37			
10	-8510	-8500	10	100	0,015	4,50	5,00	57		FBPB M60-15 mini+H37	0,164	0,59	0,21	0,000095	0,024950	0,10	0,022	0,26	1,71	6,00	111	2,46			
11	-8500	-8490	10	110	0,015	4,50	5,00	57		FBPB M60-15 mini+H37	0,166	0,59	0,22	0,000095	0,025045	0,10	0,023	0,28	1,66	6,00	111	2,56			
12	-8490	-8480	10	120	0,015	4,50	5,00	57		FBPB M60-15 mini+H37	0,168	0,59	0,22	0,000095	0,025140	0,10	0,023	0,28	1,67	6,00	111	2,66			
13	-8480	-8470	10	130	0,015	4,50	5,00	57		FBPB M60-15 mini+H37	0,170	0,59	0,22	0,000095	0,025235	0,10	0,023	0,28	1,69	6,00	111	2,76			
14	-8470	-8460	10	140	0,015	4,50	5,00	57		FBPB M60-15 mini+H37	0,171	0,59	0,22	0,000095	0,025330	0,10	0,023	0,28	1,71	6,00	111	2,86			
15	-8460	-8450	10	150	0,015	4,50	5,00	57	J	FBPB M60-15 mini+H37	0,173	0,59	0,22	0,000095	0,025425	0,10	0,024	0,28	1,72	6,00	111	2,96			
16	-8450	-8440	10	160	0,015	4,50	5,00	57		FBPB M60-15 mini+H37	0,175	0,59	0,22	0,000095	0,025520	0,10	0,024	0,29	1,67	6,00	111	3,06			
17	-8440	-8430	10	170	0,015	4,50	5,00	57	l	FBPB M60-15 mini+H37	0,176	0,59	0,22	0,000095	0,025615	0,10	0,024	0,29	1,69	6,00	111	3,16			
18	-8430	-8420	10	180	0,015	4,50	5,00	57		FBPB M60-15 mini+H37	0,178	0,59	0,23	0,000095	0,025710	0,10	0,024	0,29	1,70	6,00	111	3,25			
19	-8420	-8410	10	190	0,015	4,50	5,00	57	l	FBPB M60-15 mini+H37	0,180	0,59	0,23	0,000095	0,025805	0,10	0,024	0,29	1,72	6,00	111	3,35			
20	-8410	-8400	10	200	0,015	4,50	5,00	57	<u> </u>	FBPB M60-15 mini+H37	0,182	0,59	0,23	0,000095	0,025900	0,10	0,025	0,29	1,73	6,00	111	3,45			
21	-8400	-8390	10	210	0,015	4,50	13,00	57		FBPB M60-15 mini+H37	0,184	0,48	0,23	0,000175	0,026075	0,10	0,025	0,30	1,69	6,00	111	3,55			
22	-8390	-8380	10	220	0,015	4,50	13,00	57		FBPB M60-15 mini+H37	0,187	0,48	0,23	0,000175	0,026250	0,10	0,025	0,30	1,71	6,00	111	3,64			
23	-8380	-8370	10	230	0,015	4,50	13,00	57		FBPB M60-15 mini+H37	0,189	0,48	0,23	0,000175	0,026425	0,10	0,026	0,30	1,73	6,00	111	3,741318			
24	-8370	-8360	10	240	0,015	4,50	13,00	57		FBPB M60-15 mini+H37	0,192	0,48	0,23	0,000175	0,026600	0,10	0,026	0,30	1,76	6,00	111	3,837404			
25	-8360	-8350	10	250	0,015	4,50	13,00	57		FBPB M60-15 mini+H37	0,194	0,48	0,24	0,000175	0,026775	0,09	0,026	0,31	1,71	6,00	111	3,932202			
26	-8350	-8340	10	260	0,015	4,50	13,00	57		FBPB M60-15 mini+H37	0,197	0,48	0,24	0,000175	0,026950	0,10	0,027	0,31	1,74	6,00	111	4,029403			
27	-8340	-8330	10	270	0,015	4,50	13,00	57		FBPB M60-15 mini+H37	0,200	0,48	0,24	0,000175	0,027125	0,10	0,027	0,31	1,76	6,00	111	4,125336			
28	-8330	-8320	10	280	0,015	4,50	13,00	57		FBPB M60-15 mini+H37	0,202	0,48	0,24	0,000175	0,027300	0,09	0,028	0,31	1,78	6,00	111	4,220124			
29	-8320	-8310	10	290	0,015	4,50	13,00	57		FBPB M60-15 mini+H37	0,205	0,48	0,24	0,000175	0,027475	0,09	0,028	0,32	1,74	6,00	111	4,313706			
30	-8310	-8300	10	300	0,015	4,50	13,00	57		FBPB M60-15 mini+H37	0,207	0,48	0,24	0,000175	0,027650	0,10	0,028	0,32	1,76	6,00	111	4,40959			
31	-8300	-8290	10	310	0,015	4,50	13,00	57		FBPB M60-15 mini+H37	0,210	0,48	0,25	0,000175	0,027825	0,09	0,029	0,32	1,78	6,00	111	4,504284			
32	-8290	-8280	10	320	0,015	4,50	13,00	57		FBPB M60-15 mini+H37	0,212	0,48	0,25	0,000175	0,028000	0,09	0,029	0,32	1,80	6,00	111	4,597908			
33	-8280	-8270	10	330	0,015	4,50	13,00	57		FBPB M60-15 mini+H37	0,215	0,48	0,25	0,000175	0,028175	0,09	0,029	0,33	1,76	6,00	111	4,690399			
34	-8270	-8260	10	340	0,015	4,50	13,00	57		FBPB M60-15 mini+H37	0,218	0,48	0,25	0,000175	0,028350	0,09	0,030	0,33	1,78	6,00	111	4,785097			
35	-8260	-8250	10	350	0,015	4,50	13,00	57		FBPB M60-15 mini+H37	0,220	0,48	0,25	0,000175	0,028525	0,09	0,030	0,33	1,80	6,00	111	4,878676			
36	-8250	-8240	10	360	0,015	4,50	13,00	57	<u></u>	FBPB M60-15 mini+H37	0,223	0,48	0,25	0,000175	0,028700	0,09	0,030	0,35	1,76	6,00	111	4,971251			

					0,002			
				Longueur	Pente du	Large	ur (m)	
N° Tronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL
37	-8240	-8230	10	370	0,015	4,50	13,00	57
38	-8230	-8220	10	380	0,015	4,50	13,00	57
39	-8220	-8210	10	390	0,015	4,50	13,00	57
40	-8210	-8200	10	400	0,008	4,50	13,00	57
41	-8200	-8190	10	410	0,008	4,50	13,00	57
42	-8190	-8180	10	420	0,008	4,50	13,00	57
43	-8180	-8170	10	430	0,008	4,50	13,00	57
44	-8170	-8160	10	440	0,008	4,50	13,00	57
	0							


	Q Rat Coef C Surface (km²)										CALCUL					BVN		
Nature du DL	Total (m³/s)		Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	Intensité (mm/h)	Somme des TC Unit	Q pointe	s	С	тс	T Retour
FBPB M60-15 mini+H37	0,225		0,48	0,25	0,000175	0,028875	0,09	0,031	0,35	1,78	6,00	111	5,065959					
FBPB M60-15 mini+H37	0,228		0,48	0,26	0,000175	0,029050	0,09	0,031	0,35	1,80	6,00	111	5,159586					
FBPB M60-15 mini+H37	0,230		0,48	0,26	0,000175	0,029225	0,09	0,031	0,35	1,82	6,00	111	5,252244					
FBPB M60-15 mini+H37	0,233		0,48	0,26	0,000175	0,029400	0,09	0,043	0,45	1,40	6,00	111	5,34387					
FBPB M60-15 mini+H37	0,236		0,48	0,26	0,000175	0,029575	0,12	0,043	0,45	1,41	6,00	111	5,462958					
FBPB M60-15 mini+H37	0,238		0,48	0,26	0,000175	0,029750	0,12	0,044	0,45	1,43	6,00	111	5,580747					
FBPB M60-15 mini+H37	0,241		0,48	0,26	0,000175	0,029925	0,12	0,044	0,46	1,41	6,00	111	5,697374					
FBPB M60-15 mini+H37	0,243		0,48	0,26	0,000175	0,030100	0,12	0,045	0,46	1,42	6,00	111	5,815747					
	FBPB M60-15 mini+H37	Nature du DL	Nature du DL	Nature du DL	Nature du DL	Nature du DL	Coef C Surface Cumulé Tronçon Cumulée TC tronçon SR23 cible He(m) V (m/s) TC Calc cumulée Cumulé (min) Cumulée TC tronçon SR23 cible He(m) V (m/s) Cumulée (min) TC Calc cumulée (min)	Nature du DL	Nature du DL	Nature du DL C Ref Total (m³/s) Pondéré Cumulé Tronçon cumulée TC tronçon (min) SR23 telem V (m/s) TC Calc trensité (mm/n) Cible TC Cumulé (min) TC Calc (min) Cible TC Calc (min) Cible TC Calc (min) Cible TC Calc (min) Cible TC Calc (min) Cible TC Calc (min) Calc Calc (min) Calc C	Nature du DL Q Rat Total (m/ys) Pondéré Cumulé Tronçon cumulée TC tronçon (min) SR23 (ible He(m) V (m/s) TC Calc cumulé (min/h) Cumulé (min/h) S CALCUL Note Cumulé (min/h) Cu	Nature du DL Nature du DL Pondéré Cumulé Tronçon cumulée TC tronçon (min) SR23 He(m) V (m/s) TC Calc (cumulé (mm/h) Cible TC (min) TC Calc (cumulé (mm/h) Cible He(m) V (m/s) TC Calc (cumulé (mm/h) Cible TC (min) TC Calc (cumulé (mm/h) Cible TC (cumulé (mm/h) Cible TC (cumulé (mm/h) Cible TC (min) TC Calc (cumulé (mm/h) Cible TC (cumulé (mm/h) Cible	Nature du DL					

0,50

					0,002			
				Longueur	Pente du	Large	ur (m)	
N° Tronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL
37	-8240	-8230	10	370	0,015	4,50	3,00	58
38	-8230	-8220	10	380	0,015	4,50	3,00	58
39	-8220	-8210	10	390	0,008	4,50	3,00	58
40	-8210	-8200	10	400	0,008	4,50	3,00	58
41	-8200	-8190	10	410	0,008	4,50	3,00	58
42	-8190	-8180	10	420	0,008	4,50	3,00	58
43	-8180	-8170	10	430	0,002	4,50	3,00	77
44	-8170	-8160	10	440	0,002	4,50	3,00	77
	0							

ur	Pente du	Large	ur (m)			Q Rat	Coe	f C	Surfa	ce (km²)					CALCUL				В	/N	
e	tronçon (m/m)	Plateforme	Talus	Code du DL	Nature du DL	Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	Intensité (mm/h)	Somme des TC Unit	Q pointe	s	тс	T
0	0,015	4,50	3,00	58	FBPB M60-15 maxi	0,046	0,65	0,65	0,000075	0,002775	0,15	0,006	0,10	1,16	10,00	92	8,306759				
)	0,015	4,50	3,00	58	 FBPB M60-15 maxi	0,047	 0,65	0,65	0,000075	0,002850	0,14	0,006	0,10	1,19	10,00	92	8,450795				
)	0,008	4,50	3,00	58	 FBPB M60-15 maxi	0,049	 0,65	0,65	0,000075	0,002925	0,14	0,009	0,12	0,99	10,00	92	8,591041				
0	0,008	4,50	3,00	58	 FBPB M60-15 maxi	0,050	0,65	0,65	0,000075	0,003000	0,17	0,009	0,12	1,01	10,00	92	8,759822				
)	0,008	4,50	3,00	58	 FBPB M60-15 maxi	0,051	0,65	0,65	0,000075	0,003075	0,16	0,009	0,12	1,04	10,00	92	8,924526				
) [0,008	4,50	3,00	58	FBPB M60-15 maxi	0,052	0,65	0,65	0,000075	0,003150	0,16	0,010	0,14	0,97	10,00	92	9,085213				
)	0,002	4,50	3,00	77	 Buse béton Ø 600	0,282	0,65	0,31	0,000075	0,035225	0,17	0,084	0,53	1,07	10,00	92	9,256896	0,2287	0,032 _{0,}	28 5	10
) [0,002	4,50	3,00	77	Buse béton Ø 600	0,283	0,65	0,31	0,000075	0,035300	0,16	0,085	0,53	1,07	10,00	92	9,412522				

0,50

PROJET

TGO - PN piétons 1-2 PN1-3 et PN1-4 Obs: Km 7+507 au 7+058 - Voie 1

Fossé de crête

TC mini =

I maxi (mm/h) 91,9

Coefficients de Montana :

Paris Montsouris

Montana pour T = Pour Tc < 25 min :

a1 = 211 0,361

Pour 25 min<Tc<6 heures :

823 0,784

Pas de calcul entre 2 PT (m)

Coefficients de ruissellement :

Plateforme : 0,85 Talus : 0,35 PK début (m):

PK fin (m):

7 038

7 742

27 28 29 30 31

Rapport Q100/Q10 BV <2 km2 : Rapport Q100/Q10 BV >= 2 km2 :

Q100/Q10 pour les BVN

					0,002	Lard	eur (m)				Coe	ef C	Surfa	ce (km²)				2,00	CALCUL]		BVN
N° Tronç	on PK début (m)	PK fin (m)	Longueur tronçon (m)	Longueur cumulée (m)	Pente du tronçon (m/m)	Plateforme	Talus	Code du DL	Nature du DL	Q Rat Total (m³/s)	Pondéré		Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (mm/h)	Somme des TC Unit	Q s	C TC T Retour
1	-7742	-7732	10	10	0,011	5,50	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,002	0,61	0,61	0,000105	0,000105	0.83	0.000	0.02	0.15	10.00 92	0.83		
2	-7732	-7722	10	20	0,011	5,50	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45		0,61	0,30	0,000105	0,070210	0,83	0,076	0,29	1.93	14.00 92		0,4747 0,07	0.3 14 10
3	-7722	-7712	10	30	0,011	5,50	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,478	0,61	0,30	0,000105	0,070315	0.09	0.076	0,29	1.93	14.09 81	14.09		
4	-7712	-7702	10	40	0,011	5,50	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,478	0,61	0,30	0,000105	0,070420	0.09	0.076	0.29	1.93	14.17 81	14.17		
5	-7702	-7692	10	50	0,011	5,50	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,479	0,61	0,30	0,000105	0,070525	0,09	0,076	0,29	1,93	14,26 81	14,26		
6	-7692	-7682	10	60	0,011	5,50	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,479	0,61	0,30	0,000105	0,070630	0,09	0,076	0,29	1,93	14,35 81	14,35		
7	-7682	-7672	10	70	0,011	5,50	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,480	0,61	0,30	0,000105	0,070735	0,09	0,076	0,29	1,93	14,43 80	14,43		
8	-7672	-7662	10	80	0,011	5,50	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,480	0,61	0,30	0,000105	0,070840	0,09	0,076	0,29	1,93	14,52 80	14,52		
9	-7662	-7652	10	90	0,011	5,50	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,480	0,61	0,30	0,000105	0,070945	0,09	0,076	0,29	1,93	14,60 80	14,60		
10	-7652	-7642	10	100	0,011	5,50	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,481	0,61	0,30	0,000105	0,071050	0,09	0,076	0,29	1,93	14,69 80	14,69		
11	-7642	-7632	10	110	0,011	5,50	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,481	0,61	0,31	0,000105	0,071155	0,09	0,076	0,29	1,93	14,78 80	14,78		
12	-7632	-7622	10	120	0,011	5,50	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,482	0,61	0,31	0,000105	0,071260	0,09	0,077	0,29	1,93	14,86 80	14,86		
13	-7622	-7612	10	130	0,011	5,50	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,482	0,61	0,31	0,000105	0,071365	0,09	0,077	0,29	1,93	14,95 79	14,95		
14	-7612	-7602	10	140	0,011	5,50	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,482	0,61	0,31	0,000105	0,071470	0,09	0,077	0,29	1,94	15,04 79	15,04		
15	-7602	-7592	10	150	0,011	5,50	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,483	0,61	0,31	0,000105	0,071575	0,09	0,077	0,29	1,94	15,12 79	15,12		
16	-7592	-7582	10	160	0,011	5,50	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,483	0,61	0,31	0,000105	0,071680	0,09	0,077	0,29	1,94	15,21 79	15,21		
17	-7582	-7572	10	170	0,011	5,50	3,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,484	0,66	0,31	0,000090	0,071770	0,09	0,077	0,29	1,94	15,29 79	15,29		
18	-7572	-7562	10	180	0,011	5,50	3,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,484	0,66	0,31	0,000090	0,071860	0,09	0,077	0,29	1,94	15,38 79	15,38		
19	-7562	-7552	10	190	0,011	5,50	3,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,484	0,66	0,31	0,000090	0,071950	0,09	0,077	0,29	1,94	15,47 79	15,47		
20	-7552	-7542	10	200	0,011	5,50	3,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,485	0,66	0,31	0,000090	0,072040	0,09	0,077	0,29	1,93	15,55 78	15,55		
21	-7542	-7532	10	210	0,011	5,50	3,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,485	0,66	0,31	0,000090	0,072130	0,09	0,077	0,29	1,93	15,64 78	15,64		
22	-7532	-7522	10	220	0,011	5,50	3,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,485	0,66	0,31	0,000090	0,072220	0,09	0,077	0,29	1,93	15,72 78	15,72		
23	-7522	-7512	10	230	0,011	5,50	3,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,486	0,66	0,31	0,000090	0,072310	0,09	0,077	0,29	1,93	15,81 78	15,81		
24	-7512	-7502	10	240	0,011	5,50	3,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,486	0,66	0,31	0,000090	0,072400	0,09	0,077	0,29	1,93	15,90 78	15,90		
25	-7502	-7492	10	250	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,486	0,69	0,31	0,000080	0,072480	0,09	0,077	0,29	1,93	15,98 78	15,98		
26	-7492	-7482	10	260	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,486	0,69	0,31	0,000080	0,072560	0,09	0,077	0,29	1,93	16,07 77	16,07		
27	-7482	-7472	10	270	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,487	0,69	0,31	0,000080	0,072640	0,09	0,077	0,29	1,93	16,16 77	16,16		
28	-7472	-7462	10	280	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,487	0,69	0,31	0,000080	0,072720	0,09	0,077	0,29	1,93	16,24 77	16,24258		
29	-7462	-7452	10	290	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,487	0,69	0,31	0,000080	0,072800	0,09	0,077	0,29	1,94	16,33 77	16,32874		•
30	-7452	-7442	10	300	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,487	0,69	0,31	0,000080	0,072880	0,09	0,077	0,29	1,94	16,41 77	16,41485		•
31	-7442	-7432	10	310	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,488	0,69	0,31	0,000080	0,072960	0,09	0,077	0,29	1,94	16,50 77	16,50092		
32	-7432	-7422	10	320	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,488	0,69	0,31	0,000080	0,073040	0,09	0,078	0,29	1,94	16,59 77	16,58694		
33	-7422	-7412	10	330	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,488	0,69	0,31	0,000080	0,073120	0,09	0,078	0,29	1,94	16,67 76	16,67292		
34	-7412	-7402	10	340	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,488	0,69	0,31	0,000080	0,073200	0,09	0,078	0,29	1,94	16,76 76	16,75885		
35	-7402	-7392	10	350	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,489	0,69	0,32	0,000080	0,073280	0,09	0,078	0,29	1,94	16,84 76	16,84473		
36	-7392	-7382	10	360	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,489	0,69	0,32	0,000080	0,073360	0,09	0,078	0,29	1,94	16,93 76	16,93056		

					0,002												0,50						
				Longueur	Pente du	Large	eur (m)		Q Rat	Co	ef C	Surfa	ice (km²)					CALCUL				BVN	ı
N° Tronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL	Nature du DL Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	cumulé	ntensité (mm/h)	Somme des TC Unit	Q pointe	s c	TC Retou
37	-7382	-7372	10	370	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,489	0,69	0,32	0,000080	0,073440	0,09	0,078	0,29	1,94	17,02	76	17,01634		/ /	
38	-7372	-7362	10	380	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,490	0,69	0,32	0,000080	0,073520	0,09	0,078	0,29	1,94	17,10	76	17,10208			
39	-7362	-7352	10	390	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,490	0,69	0,32	0,000080	0,073600	0,09	0,078	0,29	1,94	17,19	76	17,18819			
40	-7352	-7342	10	400	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,490	0,69	0,32	0,000080	0,073680	0,09	0,078	0,29	1,94	17,27	75	17,27426			
41	-7342	-7332	10	410	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,490	0,69	0,32	0,000080	0,073760	0,09	0,078	0,29	1,94	17,36	75	17,36028			
42	-7332	-7322	10	420	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,491	0,69	0,32	0,000080	0,073840	0,09	0,078	0,29	1,94	17,45	75	17,44625			
43	-7322	-7312	10	430	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,491	0,69	0,32	0,000080	0,073920	0,09	0,078	0,29	1,94	17,53	75	17,53217			
44	-7312	-7302	10	440	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,491	0,69	0,32	0,000080	0,074000	0,09	0,078	0,29	1,94	17,62	75	17,61804			
45	-7302	-7292	10	450	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,492	0,69	0,32	0,000080	0,074080	0,09	0,078	0,29	1,94	17,70	75	17,70386			
46	-7292	-7282	10	460	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,492	0,69	0,32	0,000080	0,074160	0,09	0,078	0,29	1,94	17,79	75	17,78963			
47	-7282	-7272	10	470	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,492	0,69	0,32	0,000080	0,074240	0,09	0,078	0,29	1,95	17,88	75	17,87534			
48	-7272	-7262	10	480	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,492	0,69	0,32	0,000080	0,074320	0,09	0,078	0,29	1,95	17,96	74	17,96101			
49	-7262	-7252	10	490	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,493	0,69	0,32	0,000080	0,074400	0,09	0,078	0,29	1,95	18,05	74	18,04662			
50	-7252	-7242	10	500	0,011	5,50	2,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,493	0,69	0,32	0,000080	0,074480	0,09	0,078	0,29	1,95	18,13	74	18,13218			
51	-7242	-7232	10	510	0,011	5,70	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,494	0,62	0,32	0,000107	0,074587	0,09	0,078	0,29	1,95	18,22	74	18,21769			
52	-7232	-7222	10	520	0,011	5,70	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,494	0,62	0,32	0,000107	0,074694	0,09	0,079	0,29	1,95	18,30	74	18,30311			
53	-7222	-7212	10	530	0,011	5,70	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,495	0,62	0,32	0,000107	0,074801	0,09	0,079	0,29	1,94	18,39	74	18,38844			
54	-7212	-7202	10	540	0,011	5,70	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,495	0,62	0,32	0,000107	0,074908	0,09	0,079	0,29	1,94	18,47	74	18,47454			
55	-7202	-7192	10	550	0,011	5,70	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,496	0,62	0,32	0,000107	0,075015	0,09	0,079	0,29	1,94	18,56	74	18,56055			
56	-7192	-7182	10	560	0,011	5,70	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,496	0,62	0,32	0,000107	0,075122	0,09	0,079	0,29	1,94	18,65	73	18,64648			
57	-7182	-7172	10	570	0,011	5,70	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,497	0,62	0,32	0,000107	0,075229	0,09	0,079	0,29	1,94	18,73	73	18,73231			
58	-7172	-7162	10	580	0,011	5,70	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,497	0,62	0,32	0,000107	0,075336	0,09	0,079	0,29	1,95	18,82	73	18,81805			
59	-7162	-7152	10	590	0,011	5,70	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,498	0,62	0,33	0,000107	0,075443	0,09	0,079	0,29	1,95	18,90	73	18,9037			
60	-7152	-7142	10	600	0,011	5,70	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,498	0,62	0,33	0,000107	0,075550	0,09	0,079	0,29	1,95	18,99	73	18,98927			
61	-7142	-7132	10	610	0,011	5,70	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,499	0,62	0,33	0,000107	0,075657	0,09	0,079	0,29	1,95	19,07	73	19,07474			
62	-7132	-7122	10	620	0,011	5,70	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,499	0,62	0,33	0,000107	0,075764	0,09	0,079	0,29	1,95	19,16	73	19,16012			
63	-7122	-7112	10	630	0,011	5,70	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,500	0,62	0,33	0,000107	0,075871	0,09	0,079	0,29	1,95	19,25	73	19,24541			
64	-7112	-7102	10	640	0,011	5,70	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,500	0,62	0,33	0,000107	0,075978	0,09	0,080	0,29	1,95	19,33	72	19,33104			
65	-7102	-7092	10	650	0,011	6,00	11,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,501	0,52	0,33	0,000175	0,076153	0,09	0,080	0,29	1,95	19,42	72	19,41658			
66	-7092	-7082	10	660	0,011	6,00	11,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,502	0,52	0,33	0,000175	0,076328	0,09	0,080	0,29	1,96	19,50	72	19,50194			
67	-7082	-7072	10	670	0,011	6,00	11,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,503	0,52	0,33	0,000175	0,076503	0,09	0,080	0,29	1,96	19,59	72	19,58713			
68	-7072	-7062	10	680	0,011	6,00	11,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,504	0,52	0,33	0,000175	0,076678	0,09	0,080	0,29	1,96	19,67	72	19,67214			
69	-7062	-7052	10	690	0,011	6,00	11,50	30	Fossé Trapézoïdal Revêtu 3/2 44-45 0,506	0,52	0,33	0,000175	0,076853	0,08	0,080	0,30	1,95	19,76	72	19,75698			
70	-7052	-7042	10	700	0,004	0,00	0,00	78	Buse béton Ø 700 0,506	0,80	0,33	0,000000	0,076853	0,09	0,106	0,51	1,67	19,84	72	19,84249			
71	-7042	-7032	10	710	0,004	0,00	0,00	78	Buse béton Ø 700 0,506	0,80	0,33	0,000000	0,076853	0,10	0,106	0,51	1,67	19,94	72	19,94209			
	0									<u> </u>													

PROJET

TGO - PN piétons 1-2 PN1-3 et PN1-4 Obs: Km 7+857 au 6+754 - Voie 1 Solution avec un fossé crête

I maxi (mm/h) 91,9 TC mini = Coefficients de Montana : **Paris Montsouris** Montana pour T =

Q100/Q10 pour les BVN

Rapport Q100/Q10 BV <2 km2 : Rapport Q100/Q10 BV >= 2 km2

Pour Tc < 25 min : a1 = 211 0,361

Pour 25 min<Tc<6 heures :

10

Pas de calcul entre 2 PT (m)

Coefficients de ruissellement :

Plateforme : 0,85 Talus: 0.35 PK début (m):

PK fin (m) · -

6 754

7 857

823

0,784

	Talus :	0,35				P	K fin (m):	- 6 754																		
1	2	3	4	5	6	7	8	9	# # #	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28 29	30 31
				1	0,002			ı	1											0,50			1			
				Longueur	Pente du	Large	eur (m)				Q Rat		Coef	f C	Surfa	ce (km²)					CALCU	L			BVN	i
N° Tronçoi	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée	tronçon	DI		Code du DL		Nature du DL	Total	_			_	.,	TC tronçon	SR23		.,, ,,	TC Calc	Intensité	Somme	Q		то т
				(m)	(m/m)	Plateforme	Talus				(m³/s)	Po	ondéré	Cumulé	Tronçon	cumulée	(min)	cible	He(m)	V (m/s)	cumulé (min)	(mm/h)	des TC Unit	pointe	s c	TC Retour
	1 1		1	1			1	1	<u>.</u>												()					
1	-7857	-7847	10	10	0,004	5,50	1,50	58		FBPB M60-15 +H58	0,001		0,74	0,74	0,000070	0,000070	0,83	0,000	0,02	0,14	10,00	92	0,83			
2	-7847	-7837	10	20	0,004	5,50	1,50	58		FBPB M60-15 +H58	0,477		0,74	0,30	0,000070	0,070140	0,83	0,126	0,96	1,18	14,00	92	14,00	0,4747	,07 0,3	14 10
3	-7837	-7827	10	30	0,004	5,50	1,50	58		FBPB M60-15 +H58	0,477		0,74	0,30	0,000070	0,070210	0,14	0,126	0,96	1,18	14,14	81	14,14			
4	-7827	-7817	10	40	0,004	5,50	1,50	58		FBPB M60-15 +H58	0,477		0,74	0,30	0,000070	0,070280	0,14	0,125	0,96	1,18	14,28	81	14,28			
5	-7817	-7807	10	50	0,004	5,50	1,50	58		FBPB M60-15 +H58	0,477		0,74	0,30	0,000070	0,070350	0,14	0,125	0,96	1,18	14,42	81	14,42			
6	-7807	-7797	10	60	0,004	5,50	1,50	58		FBPB M60-15 +H58	0,477		0,74	0,30	0,000070	0,070420	0,14	0,125	0,96	1,18	14,56	80	14,56			
7	-7797	-7787	10	70	0,004	5,50	1,50	58		FBPB M60-15 +H58	0,477		0,74	0,30	0,000070	0,070490	0,14	0,125	0,94	1,19	14,70	80	14,70			
8	-7787	-7777	10	80	0,004	5,50	1,50	58		FBPB M60-15 +H58	0,477		0,74	0,30	0,000070	0,070560	0,14	0,125	0,94	1,19	14,84	80	14,84			
9	-7777	-7767	10	90	0,004	5,50	1,50	58		FBPB M60-15 +H58	0,477		0,74	0,30	0,000070	0,070630	0,14	0,125	0,94	1,19	14,98	79	14,98			
10	-7767	-7757	10	100	0,004	5,50	3,50	58		FBPB M60-15 +H58	0,477		0,66	0,30	0,000090	0,070720	0,14	0,125	0,94	1,19	15,12	79	15,12			
11	-7757	-7747	10	110	0,004	5,50	3,50	58		FBPB M60-15 +H58	0,477		0,66	0,30	0,000090	0,070810	0,14	0,125	0,94	1,19	15,26	79	15,26			
12	-7747	-7737	10	120	0,004	5,50	3,50	58		FBPB M60-15 +H58	0,477		0,66	0,31	0,000090	0,070900	0,14	0,125	0,94	1,19	15,40	79	15,40			
13	-7737	-7727	10	130	0,004	5,50	3,50	58		FBPB M60-15 +H58	0,477		0,66	0,31	0,000090	0,070990	0,14	0,125	0,94	1,19	15,54	78	15,54			
14	-7727	-7717	10	140	0,004	5,50	3,50	58		FBPB M60-15 +H58	0,477		0,66	0,31	0,000090	0,071080	0.14	0.124	0.94	1.19	15.69	78	15.69			
15	-7717	-7707	10	150	0,004	5,50	3,50	58		FBPB M60-15 +H58	0,477		0,66	0,31	0,000090	0,071170	0.14	0,124	0,94	1.19	15.83	78	15.83			
16	-7707	-7697	10	160	0,004	5,50	3,50	58		FBPB M60-15 +H58	0,477		0,66	0,31	0,000090	0,071260	0.14	0.124	0.94	1.19	15.97	78	15.97			
17	-7697	-7687	10	170	0,004	5,50	3,50	58	***************************************	FBPB M60-15 +H58	0,477		0,66	0,31	0,000090	0,071350	0.14	0.124	0.94	1.19	16,11	77	16.11			
18	-7687	-7677	10	180	0,004	5,50	3,50	58	***************************************	FBPB M60-15 +H58	0,477		0,66	0,31	0,000090	0,071440	0.14	0.124	0.94	1.19	16.25	77	16.25			
19	-7677	-7667	10	190	0,004	5,50	3,50	58		FBPB M60-15 +H58	0,477		0,66	0,31	0,000090	0,071530	0.14	0.124	0.94	1.18	16.39	77	16.39			
20	-7667	-7657	10	200	0,004	5,50	3,50	58		FBPB M60-15 +H58	0,477		0,66	0,31	0,000090	0,071620	0.14	0.124	0.94	1 19	16.53	77	16.53			
21	-7657	-7647	10	210	0,004	5,50	3,50	58		FBPB M60-15 +H58	0,477		0,66	0,31	0,000090	0,071710	0.14	0,124	0.94	1,18	16.67	76	16.67	·····		
22	-7647	-7637	10	220	0,004	5,50	5,00	58		FBPB M60-15 +H58	0,477		0,61	0,31	0,000105	0,071815	0.14	0.124	0.94	1.18	16,81	76	16.81	•••••		
23	-7637	-7627	10	230	0,004	5,50	5,00	58		FBPB M60-15 +H58	0.477		0,61	0.31	0,000105	0,071920	0.14	0.124	0.94	1.18	16,95	76	16.95	···-··		
24	-7627	-7617	10	240	0,004	5,50	5,00	58	***********	FBPB M60-15 +H58	0.477		0.61	0.31	0,000105	0,072025	0.14	0,124	0,94	1.18	17.09	76	17.09	···-··		
25	-7617	-7607	10	250	0.004	5.50	5.00	58	************	FBPB M60-15 +H58	0.477		0.61	0.31	0.000105	0.072130	0,14	0,124	0,94	1,18	17,23	76	17,23	······		
26	-7607	-7597	10	260	0,004	5,50	5,00	58		FBPB M60-15 +H58	0,477		0,61	0,31	0,000105	0,072235	0.14	0,124	0,94	1.18	17,37	75	17.37	·····		
27	-7597	-7587	10	270	0.004	5.50	5.00	58		FBPB M60-15 +H58	0.477		0.61	0.31	0,000105	0,072340	0,14	0,124	0,94	1,18	17,57	75 75	17,51	····		
28	-7587	-7577	10	280	0.004	5.50	5.00	58		FBPB M60-15 +H58	0.477		0.61	0.31	0,000105	0,072445	0,14	0,124	0,94	1,18	17,65	75 75	17,65403			
29	-7577	-7567	10	290	0,004	5,50	5,00	58	•••••	FBPB M60-15 +H58	0,477		0,61	0,31	0,000105	0,072550	0,14	0,124	0,94	1,10	17,03	75 75	17,79482			
30	-7567	-7557	10	300	0,004	5,50	5,00	58	************	FBPB M60-15 +H58	0,477		0,61	0,31	0,000105	0,072655				- <mark></mark>	•					
31	-7557	-7547	10	310	0.004	5.50	5.00	58		FBPB M60-15 +H58	0,477		0.61	0.31	0,000105	0,072760	0,14	0,124	0,94	1,18	17,94	74	17,9356			
32	-7547	-7537	10	320	0.004	5,50	5.00	58		FBPB M60-15 +H58	0,477		0.61	0,31	0.000105	0.072865	0,14	0,124	0,94	1,18	18,08	74	18,07639			
32	-7547 -7537	-7537 -7527	10		0,004	5,50	5,00	58		FBPB M60-15 +H58	0,477			0,31	0,000105	0,072970	0,14	0,124	0,94	1,18	18,22	74	18,21718			
33	-7537 -7527	-7527 -7517	10	330 340	0,004	5,50		58 58		FBPB M60-15 +H58			0,61	0,31	0,000105	0,072970	0,14	0,124	0,94	1,18	18,36	74	18,35797			
							5,00				0,477		0,61				0,14	0,124	0,94	1,18	18,50	74	18,49876			
35	-7517	-7507	10	350	0,004	5,50	5,00	58		FBPB M60-15 +H58	0,477		0,61	0,32	0,000105	0,073180	0,14	0,124	0,94	1,18	18,64	73	18,63954			
36	-7507	-7497	10	360	0,004	5,50	5,00	58	l	FBPB M60-15 +H58	0,477		0,61	0,32	0,000105	0,073285	0,14	0,124	0,94	1,18	18,78	73	18,78031			

					0,002													0,50		_				
				Longueur	Pente du	Large	eur (m)			Q Rat	Coe	ef C	Surfa	ce (km²)					CALCUL	1 1		BVN	N	
N° Tronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée	tronçon	D		Code du DL	Nature du DL	Total			_	.,	TC tronçon	SR23			TC Calc Intensité	Somme	Q		1	Т
			, ,	(m)	(m/m)	Plateforme	Talus			(m³/s)	Pondéré	Cumulé	Tronçon	cumulée	(min)	cible	He(m)	V (m/s)	cumulé (min) (mm/h)	des TC Unit	pointe	s c	C TC R	Retour
37	-7497	-7487	10	370	0,004	5,50	5,00	58	FBPB M60-15 +H58	0,477	0,61	0,32	0,000105	0,073390	0.14	0.124	0.94	1.18	18.92 73	18,92107				
38	-7487	-7477	10	380	0,004	5,50	5,00	58	FBPB M60-15 +H58	0,477	0,61	0,32	0,000105	0,073495	0,14	0,124	0,94	1,18	19,06 73	19,06183	•			
39	-7477	-7467	10	390	0,004	5,50	5,00	58	FBPB M60-15 +H58	0,477	0,61	0,32	0,000105	0,073600	0,14	0,124	0,94	1,18	19,20 73	19,20257	•			
40	-7467	-7457	10	400	0,004	5,50	5,00	58	FBPB M60-15 +H58	0,477	0,61	0,32	0,000105	0,073705	0,14	0,124	0,94	1.18	19,34 72	19,34329				
41	-7457	-7447	10	410	0,004	5,50	5,00	58	FBPB M60-15 +H58	0,477	0,61	0,32	0,000105	0,073810	0,14	0,124	0,94	1.18	19,48 72	19,484	"			
42	-7447	-7437	10	420	0,004	5,50	5,00	58	FBPB M60-15 +H58	0,477	0,61	0,32	0,000105	0,073915	0.14	0.124	0.94	1.18	19,62 72	19,6247	*			
43	-7437	-7427	10	430	0,004	5,50	5,00	58	FBPB M60-15 +H58	0,477	0,61	0,32	0,000105	0,074020	0.14	0.124	0.94	1.18	19.77 72	19.76537	•			
44	-7427	-7417	10	440	0,004	5,50	5,00	58	FBPB M60-15 +H58	0,477	0,61	0,32	0,000105	0,074125	0,14	0,124	0,94	1,18	19,91 72	19,90602				
45	-7417	-7407	10	450	0,004	5,50	5,00	58	FBPB M60-15 +H58	0,477	0,61	0,32	0,000105	0,074230	0,14	0,124	0,94	1.18	20,05 71	20,04677	•			
46	-7407	-7397	10	460	0,004	5,50	5,00	58	FBPB M60-15 +H58	0,477	0,61	0,32	0,000105	0,074335	0,14	0,124	0,94	1.18	20,19 71	20,18749				
47	-7397	-7387	10	470	0,004	5,50	5,00	58	FBPB M60-15 +H58	0,477	0,61	0,32	0,000105	0,074440	0.14	0.124	0.94	1.18	20.33 71	20,32819	*			
48	-7387	-7377	10	480	0,004	5,50	3,50	58	FBPB M60-15 +H58	0,477	0,66	0,32	0,000090	0,074530	0.14	0.124	0.94	1.18	20.47 71	20,46886				
49	-7377	-7367	10	490	0,004	5,50	3,50	58	FBPB M60-15 +H58	0,477	0,66	0,32	0,000090	0,074620	0,14	0,124	0,94	1,18	20,61 71	20,60953	•			
50	-7367	-7357	10	500	0,004	5,50	3,50	58	FBPB M60-15 +H58	0,477	0,66	0,32	0,000090	0,074710	0,14	0,124	0,94	1.18	20,75 71	20,7502	ľ			
51	-7357	-7347	10	510	0,004	5,50	3,50	58	FBPB M60-15 +H58	0,477	0,66	0,32	0,000090	0,074800	0,14	0,124	0,94	1.18	20,89 70	20,89088	"			
52	-7347	-7337	10	520	0,004	5,50	3,50	58	FBPB M60-15 +H58	0,477	0,66	0,32	0,000090	0,074890	0.14	0,124	0.94	1.18	21.03 70	21,03155				
53	-7337	-7327	10	530	0,004	5,50	3,50	58	FBPB M60-15 +H58	0,477	0,66	0,32	0,000090	0,074980	0.14	0.124	0.94	1.18	21.17 70	21,17222	***			
54	-7327	-7317	10	540	0,004	5,50	3,50	58	FBPB M60-15 +H58	0,477	0,66	0,32	0,000090	0,075070	0,14	0.124	0.94	1.18	21,31 70	21,31288				
55	-7317	-7307	10	550	0,004	5,50	3,50	58	FBPB M60-15 +H58	0,477	0,66	0,32	0,000090	0,075160	0,14	0.124	0.94	1.18	21.45 70	21,45354				
56	-7307	-7297	10	560	0,002	5,50	2,50	87	Collecteur Drainant Ø 700	0,477	0,69	0,32	0,000080	0,075240	0,14	0,105	0,51	1.58	21,59 70	21,59419	*			
57	-7297	-7287	10	570	0,002	5,50	2,50	87	Collecteur Drainant Ø 700	0,477	0,69	0,32	0,000080	0,075320	0,11	0,105	0,51	1.58	21,70 69	21,7				
58	-7287	-7277	10	580	0,002	5,50	2,50	87	Collecteur Drainant Ø 700	0,477	0,69	0,32	0,000080	0,075400	0.11	0.105	0.51	1.58	21.81 69	21,80575	"			
59	-7277	-7267	10	590	0,002	5,50	2,50	87	Collecteur Drainant Ø 700	0,477	0,69	0,33	0,000080	0,075480	0,11	0.106	0.51	1.58	21.91 69	21,91145				
60	-7267	-7257	10	600	0,002	5,50	2,50	87	Collecteur Drainant Ø 700	0,477	0,69	0,33	0,000080	0,075560	0,11	0.106	0,51	1.58	22,02 69	22,01709	1			
61	-7257	-7247	10	610	0,002	5,50	2,50	87	Collecteur Drainant Ø 700	0,477	0,69	0,33	0,000080	0,075640	0,11	0.106	0,51	1.58	22,12 69	22,1229	*			
62	-7247	-7237	10	620	0,002	5,50	2,50	87	Collecteur Drainant Ø 700	0,477	0,69	0,33	0,000080	0,075720	0,11	0,106	0,51	1.58	22,23 69	22,22865	•			
63	-7237	-7227	10	630	0,002	5,50	2,50	87	Collecteur Drainant Ø 700	0,477	0,69	0,33	0,000080	0,075800	0.11	0.106	0.51	1 58	22.33 69	22,33435				
64	-7227	-7217	10	640	0,002	5,50	2,50	87	Collecteur Drainant Ø 700	0.477	0.69	0.33	0.000080	0.075880	0,11	0,106	0,51	1,58	22,44 69	22,43999				
65	-7217	-7207	10	650	0.002	5.50	2.50	87	Collecteur Drainant Ø 700	0.477	0.69	0.33	0.000080	0.075960	0,11	0.106	0.51	1.58	22,55 69	22,5458				
66	-7207	-7197	10	660	0,002	5,50	2.50	87	Collecteur Drainant Ø 700	0.477	0.69	0.33	0.000080	0,076040	0,11	0,106	0,51	1.58	22,65 68	22,65155				
67	-7197	-7187	10	670	0,002	5,50	2,50	87	Collecteur Drainant Ø 700	0,477	0,69	0,33	0,000080	0,076120	0,11	0.106	0,51	1.58	22,76 68	22,75724				
68	-7187	-7177	10	680	0,002	5,50	2,50	87	Collecteur Drainant Ø 700	0,477	0,69	0,33	0,000080	0,076200	0,11	0.106	0.51	1.58	22,86 68	22,86287				
69	-7177	-7167	10	690	0,002	5,50	2.50	87	Collecteur Drainant Ø 700	0,477	0,69	0,33	0,000080	0,076280	0,11	0,106	0,51	1,58	22,97 68	22,96845				
70	-7167	-7157	10	700	0.002	5.50	2.50	87	Collecteur Drainant Ø 700	0.477	0.69	0.33	0.000080	0.076360	0,11	0.106	0.51	1.58	23.07 68	23,07418				
71	-7157	-7147	10	710	0.002	5,50	2.50	87	Collecteur Drainant Ø 700	0.477	0,69	0.33	0.000080	0.076440	0,11	0,106	0,51	1,58	23,18 68	23,17986				
72	-7147	-7137	10	720	0.002	5,50	2.50	87	Collecteur Drainant Ø 700	0.477	0,69	0.33	0.000080	0,076520	0,11	0,106	0,51	1.58	23,29 68	23,28548				
73	-7137	-7127	10	730	0,002	5,50	2,50	87	Collecteur Drainant Ø 700	0,477	0,69	0,33	0,000080	0,076600	0.11	0.106	0.51	1.58	23,39 68	23,39104				
74	-7127	-7117	10	740	0,002	5,50	2,50	87	Collecteur Drainant Ø 700	0,477	0,69	0,33	0,000080	0,076680	0,11	0,106	0,51	1,58	23,59 68	23,39104				
75	-7127	-7117	10	750	0,002	5,50	2,50	87	Collecteur Drainant Ø 700	0.477	0,69	0,33	0.000080	0,076760	0,11	0,106	0,51	1,58	23,60 67	•				
76	-7117	-7107	10	760	0,002	5,50	2,50	87	Collecteur Drainant Ø 700	0,477	0,69	0,33	0,000080	0,076760			0,51	1,58	23,60 67	23,60242				
77	-7107	-7087	10	770	0,002	5,50	2,50	87	Collecteur Drainant Ø 700	0,477	0,69	0,33	0.000080	0,076920	0,11	0,107			······································	23,70802				
78	-7097	-7067	10	780	0,002	5,50	2,50	87	Collecteur Drainant Ø 700	0,477	0,69	0,33	0,000080	0,077000	0,11	0,107	0,51	1,58	23,81 67	23,81356				
79	-7067	-7077	10	790	0,002	5,50	2,50	87	Collecteur Drainant Ø 700	0,477	0,69	0,33	0,000080	0,077080	0,11	0,107	0,51	1,58 1.58	23,92 67	23,91926				
79 80	-7077	-7057	10	800	0,002	5,50	2,50	87	Collecteur Drainant Ø 700 Collecteur Drainant Ø 700	0,477	0,69	0,33	0.000080	0,077080	0,11	0,107	0,51	•	24,02 67	24,02489				
81	-7067 -7057	-7057	10	810	0,002	5,50	2,50	79	Buse béton Ø 800	0,477	0,69	0,33	0,000080	0,077160	0,11	0,107	0,51	1,58	24,13 67	24,13047				
82	-7057 -7047	-7047	10	820	0,002	5,50	5.00	79 30	Fossé Trapézoïdal Revêtu 3/2 44-45		0,69	0,33	0,000107	0,077240	0,11	0,142	0,56	1,28	24,24 67	24,23598		0.00=		
82	-7047	-/03/	10	820	0,030	5,70	5,00	30	rosse Trapezoidai Revetu 3/2 44-45	U,303	0,62	U,30	0,000107	0,084507	0,13	0,054	0,24	2,92	24,37 67	24,36608	0,0957	0,007 0,6	66 19	10

PROJET

TGO - PN piétons 1-2 PN1-3 et PN1-4 Obs: Km 7+857 au 7+058 - Voie 2 Traversée sous voie au Km 7+058

TC mini = I maxi (mm/h) 91,9

Coefficients de Montana : **Paris Montsouris**

Montana pour T = Pour Tc < 25 min : a1 = 211 0,361

Pour 25 min<Tc<6 heures :

823 0,784

Pas de calcul entre 2 PT (m) Coefficients de ruissellement :

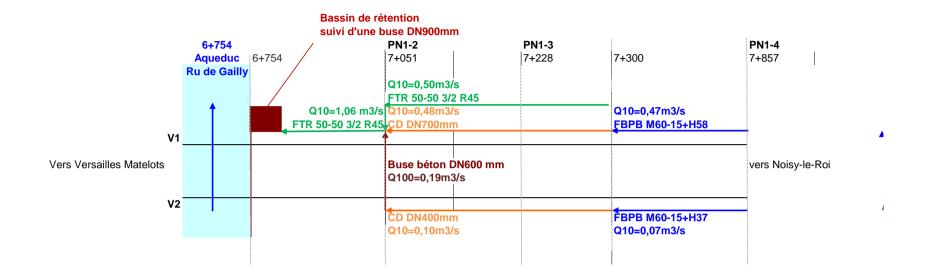
> Plateforme : 0,85 Talus : 0,35

10

PK début (m): 7 857

1/2

Q100/Q10 pour les BVN


Rapport Q100/Q10 BV <2 km2 : Rapport Q100/Q10 BV >= 2 km2

PK fin (m): -

					0,002													0,50		_			
				Longueur	Pente du	Larg	eur (m)			Q Rat	Coe	ef C	Surfa	ce (km²)					CALCUL			BVN	
N° Tronç	on PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée	tronçon	D1		Code du DL	Nature du DL	Total	5 1/ /		_		TC tronçon	SR23			TC Calc Intensit	Somme	Q	,	то Т
			, ,	(m)	(m/m)	Plateforme	Talus			(m³/s)	Pondéré	Cumulé	Tronçon	cumulée	(min)	cible	He(m)	V (m/s)	cumulé (mm/h)	des TC Unit	pointe	S C	TC Retour
				1			•																
1	-7857	-7847	10	10	0,004	5,50	1,50	56	FBPB M50-25 maxi	0,001	0,74	0,74	0,000070	0,000070	0,83	0,000	0,02	0,14	10,00 92	0,83			
2	-7847	-7837	10	20	0,004	5,50	1,50	56	FBPB M50-25 maxi	0,003	0,74	0,74	0,000070	0,000140	0,83	0,001	0,02	0,27	10,00 92	1,67			
3	-7837	-7827	10	30	0,004	5,50	1,50	56	FBPB M50-25 maxi	0,004	0,74	0,74	0,000070	0,000210	0,61	0,001	0,02	0,41	10,00 92	2,27	<mark></mark>		
4	-7827	-7817	10	40	0,004	5,50	1,50	56	FBPB M50-25 maxi	0,005	0,74	0,74	0,000070	0,000280	0,41	0,001	0,02	0,55	10,00 92	2,68			
5	-7817	-7807	10	50	0,004	5,50	1,50	56	FBPB M50-25 maxi	0,007	0,74	0,74	0,000070	0,000350	0,30	0,002	0,02	0,68	10,00 92	2,98	<mark></mark>		
6	-7807	-7797	10	60	0,004	5,50	1,50	56	FBPB M50-25 maxi	0,008	0,74	0,74	0,000070	0,000420	0,24	0,002	0,02	0,82	10,00 92	3,23			L
7	-7797	-7787	10	70	0,004	5,50	1,50	56	FBPB M50-25 maxi	0,009	0,74	0,74	0,000070	0,000490	0,20	0,002	0,06	0,39	10,00 92	3,43			L
8	-7787	-7777	10	80	0,004	5,50	1,50	56	FBPB M50-25 maxi	0,011	0,74	0,74	0,000070	0,000560	0,42	0,003	0,06	0,45	10,00 92	3,86			
9	-7777	-7767	10	90	0,004	5,50	1,50	56	FBPB M50-25 maxi	0,012	0,74	0,74	0,000070	0,000630	0,37	0,003	0,06	0,50	10,00 92	4,23			
10	-7767	-7757	10	100	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,013	0,66	0,73	0,000090	0,000720	0,33	0,004	0,06	0,57	10,00 92	4,56			
11	-7757	-7747	10	110	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,015	0,66	0,72	0,000090	0,000810	0,29	0,004	0,06	0,63	10,00 92	4,85			
12	-7747	-7737	10	120	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,016	0,66	0,72	0,000090	0,000900	0,26	0,004	0,08	0,54	10,00 92	5,12			
13	-7737	-7727	10	130	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,018	0,66	0,71	0,000090	0,000990	0,31	0,005	0,08	0,58	10,00 92	5,43			
14	-7727	-7717	10	140	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,019	0,66	0,71	0,000090	0,001080	0,29	0,005	0,09	0,55	10,00 92	5,71			
15	-7717	-7707	10	150	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,021	0,66	0,70	0,000090	0,001170	0,30	0,006	0,09	0,59	10,00 92	6,01			
16	-7707	-7697	10	160	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,022	0,66	0,70	0,000090	0,001260	0,28	0,006	0,09	0,63	10,00 92	6,30			
17	-7697	-7687	10	170	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,024	0,66	0,70	0,000090	0,001350	0,26	0,006	0,10	0,60	10,00 92	6,56			
18	-7687	-7677	10	180	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,026	0,66	0,69	0,000090	0,001440	0,28	0,007	0,10	0,64	10,00 92	6,84			
19	-7677	-7667	10	190	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,027	0,66	0,69	0,000090	0,001530	0,26	0,007	0,10	0,67	10,00 92	7,10			
20	-7667	-7657	10	200	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,029	0,66	0,69	0,000090	0,001620	0,25	0,008	0,11	0,64	10,00 92	7,35			
21	-7657	-7647	10	210	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,030	0,66	0,69	0,000090	0,001710	0,26	0,008	0,11	0,67	10,00 92	7,61			
22	-7647	-7637	10	220	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,032	0,61	0,68	0,000105	0,001815	0,25	0,008	0,11	0,71	10,00 92	7,86			
23	-7637	-7627	10	230	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,033	0,61	0,68	0,000105	0,001920	0,24	0,009	0,12	0,67	10,00 92	8,09			
24	-7627	-7617	10	240	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,035	0,61	0,68	0,000105	0,002025	0,25	0,009	0,12	0,70	10,00 92	8,34			
25	-7617	-7607	10	250	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,037	0,61	0,67	0,000105	0,002130	0,24	0,010	0,14	0,67	10,00 92	8,58			
26	-7607	-7597	10	260	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,038	0,61	0,67	0,000105	0,002235	0,25	0,010	0,14	0,70	10,00 92	8,83			
27	-7597	-7587	10	270	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,040	0,61	0,67	0,000105	0,002340	0,24	0,011	0,14	0,73	10,00 92	9,06			
28	-7587	-7577	10	280	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,041	0,61	0,66	0,000105	0,002445	0,23	0,011	0,15	0,70	10,00 92	9,289622			
29	-7577	-7567	10	290	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,043	0,61	0,66	0,000105	0,002550	0,24	0,011	0,15	0,73	10,00 92	9,526593			
30	-7567	-7557	10	300	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,045	0,61	0,66	0,000105	0,002655	0.23	0.012	0.15	0.76	10.00 92	9,754554	******		
31	-7557	-7547	10	310	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,046	0,61	0,66	0,000105	0,002760	0,22	0,012	0.16	0.73	10.00 92	9,974356			
32	-7547	-7537	10	320	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,048	0,61	0,66	0,000105	0,002865	0,23	0,013	0,16	0.75	10,20 91	10,20324			
33	-7537	-7527	10	330	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,049	0,61	0,66	0,000105	0,002970	0,22	0,013	0,16	0.77	10,43 91	10,42593			
34	-7527	-7517	10	340	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,050	0,61	0,65	0,000105	0,003075	0,22	0,013	0,16	0.79	10,43 90	10,64314			
35	-7517	-7507	10	350	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,051	0,61	0,65	0,000105	0,003180	0,21	0,014	0,17	0.75	10,85 89	10,85498			
36	-7507	-7497	10	360	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,053	0,61	0,65	0,000105	0,003285	0.22	0.014	0,17	0.77	11,08 89	11,07696			
1	1	-		1	L				l						0,22	0,014	0,17	0,77	. 1,00 09	11,07030			

					0,002	Large	ur (m)				Coe	f C	Surfa	ce (km²)				0,50	CALCUL		Г		BV	/N
Tronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	Longueur cumulée (m)	Pente du tronçon (m/m)	Plateforme	Talus	Code du DL	Nature du DL	Q Rat Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon	SR23	He(m)	V (m/s)	TC Calc cumulé	ntensité	Somme des TC	Q	s c	
				` '	, , ,					,,					(min)	cible			(min)	(mm/h)	Unit	pointe		
37	-7497	-7487	10	370	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,054	0,61	0,65	0,000105	0,003390	0.22	0.014	0.17	0.79	11.29	88	11.29384	-		
38	-7487	-7477	10	380	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,055	0,61	0,65	0,000105	0,003495	0,21	0,015	0,17	0.80	11,51	87	11,50607			
39	-7477	-7467	10	390	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,056	0,61	0,65	0,000105	0,003600	0,21	0,015	0,18	0,77	11,71	87	11,71367			
40	-7467	-7457	10	400	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,057	0,61	0,65	0,000105	0,003705	0,22	0,015	0,18	0,78	11.93	86	11,9308			
41	-7457	-7447	10	410	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,059	0,61	0,65	0,000105	0,003810	0,21	0.015	0.18	0,80	12,14	86	12,14352			
42	-7447	-7437	10	420	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,060	0,61	0,65	0,000105	0,003915	0,21	0.016	0,18	0,81	12.35	85	12,35218			
43	-7437	-7427	10	430	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,061	0,61	0,64	0,000105	0,004020	0,20	0.016	0,18	0.83	12,56	85	12,55679	-		
44	-7427	-7417	10	440	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,062	0,61	0,64	0,000105	0,004125	0,20	0,016	0,19	0.80	12,76	84	12,75751	•••		
45	-7417	-7407	10	450	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,063	0,61	0,64	0,000105	0,004230	0,21	0,017	0,19	0.81	12,97	84	12,96714			
46	-7407	-7397	10	460	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,064	0,61	0,64	0,000105	0,004335	0.21	0.017	0.19	0.82	13.17	83	13,17302			
47	-7397	-7387	10	470	0,004	5,50	5,00	56	FBPB M50-25 maxi	0,065	0,61	0,64	0,000105	0,004440	0,20	0,017	0,19	0,84	13,38	83	13,37547			
48	-7387	-7377	10	480	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,066	0,66	0,64	0,000090	0,004530	0,20	0,018	0,21	0.80	13,57	82	13,57444			
49	-7377	-7367	10	490	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,067	0,66	0,64	0,000090	0,004620	0,21	0,018	0,21	0,81	13,78	82	13,78223	-		
50	-7367	-7357	10	500	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,068	0,66	0,64	0,000090	0,004710	0,20	0,018	0,21	0,83	13,99	81	13,987			
51	-7357	-7347	10	510	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,069	0,66	0,64	0,000090	0,004800	0,20	0,018	0,21	0,84	14,19	81	14,18885			
52	-7347	-7337	10	520	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,070	0,66	0,64	0,000090	0,004890	0,20	0,019	0,21	0.85	14,39	81	14,38804			
53	-7337	-7327	10	530	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,071	0,66	0,64	0,000090	0,004980	0,20	0,019	0,21	0.86	14,58	80	14,58447			
54	-7327	-7317	10	540	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,072	0,66	0,64	0,000090	0,005070	0,19	0.019	0,22	0.82	14.78	80	14,77822			
55	-7317	-7307	10	550	0,004	5,50	3,50	56	FBPB M50-25 maxi	0,073	0,66	0,64	0,000090	0,005160	0,20	0.019	0.22	0.84	14.98	79	14,98025			
56	-7307	-7297	10	560	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,074	0,69	0,64	0,000080	0,005240	0,20	0.017	0,23	1.01	15,18	79	15,17967			
57	-7297	-7287	10	570	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,075	0,69	0,64	0,000080	0,005320	0.17	0.017	0.23	1.01	15.35	79	15,34526	•••		
58	-7287	-7277	10	580	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,076	0,69	0,65	0,000080	0,005400	0,16	0.017	0.23	1,02	15,51	78	15,50968			
59	-7277	-7267	10	590	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,077	0,69	0,65	0,000080	0,005480	0.16	0.017	0.23	1.02	15.67	78	15,67386			
60	-7267	-7257	10	600	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,078	0,69	0,65	0,000080	0,005560	0.16	0.017	0.23	1,02	15.84	78	15,83778			
61	-7257	-7247	10	610	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,079	0,69	0,65	0,000080	0,005640	0,16	0,018	0,24	1,02	16,00	78	16,00148			
62	-7247	-7237	10	620	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,080	0,69	0,65	0,000080	0,005720	0,16	0,018	0,24	1.03	16,16	77	16,16412	•••		
63	-7237	-7227	10	630	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,080	0,69	0,65	0,000080	0,005800	0.16	0.018	0.24	1.03	16.33	77	16,32656			
64	-7227	-7217	10	640	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,081	0,69	0,65	0,000080	0,005880	0,16	0,018	0,24	1.03	16,49	77	16,48882	•••		
65	-7217	-7207	10	650	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,082	0,69	0,65	0,000080	0,005960	0,16	0,018	0,24	1.03	16.65	76	16,65089			
66	-7207	-7197	10	660	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,083	0,69	0,65	0,000080	0,006040	0,16	0,019	0,24	1.04	16,81	76	16,81199			
67	-7197	-7187	10	670	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,084	0,69	0,65	0,000080	0,006120	0,16	0,019	0,25	1.04	16,97	76	16,97294			
68	-7187	-7177	10	680	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,085	0,69	0,65	0,000080	0,006200	0,16	0,019	0,25	1,04	17,13	76	17,13374			
69	-7177	-7167	10	690	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,086	0,69	0,65	0,000080	0,006280	0,16	0,019	0,25	1,04	17,29	75	17,29364			
70	-7167	-7157	10	700	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,087	0,69	0,65	0,000080	0,006360	0,16	0,019	0,25	1,04	17,45	75	17,45341			
71	-7157	-7147	10	710	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,088	0,69	0,65	0,000080	0,006440	0,16	0,020	0,25	1,04	17,61	75	17,61305			
72	-7147	-7137	10	720	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,088	0,69	0,65	0,000080	0,006520	0,16	0,020	0,25	1,05	17,77	75	17,77258			
73	-7137	-7127	10	730	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,089	0,69	0,65	0,000080	0,006600	0.16	0.020	0.26	1.05	17.93	74	17.93127			
74	-7127	-7117	10	740	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,090	0,69	0,65	0,000080	0,006680	0,16	0,020	0,26	1,05	18,09	74	18,08987			
75	-7117	-7107	10	750	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,091	0,69	0,66	0,000080	0,006760	0,16	0,020	0,26	1.06	18,25	74	18,24836			
76	-7107	-7097	10	760	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,092	0,69	0,66	0,000080	0,006840	0,16	0,021	0,26	1,06	18,41	74	18,40606			
77	-7097	-7087	10	770	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,093	0,69	0,66	0,000080	0,006920	0,16	0,021	0,26	1.06	18.56	74	18,56369			
78	-7087	-7077	10	780	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,094	0,69	0,66	0,000080	0,007000	0,16	0,021	0,26	1,06	18,72	73	18,72123			
79	-7077	-7067	10	790	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,094	0,69	0,66	0,000080	0,007080	0,16	0,021	0,27	1.06	18,88	73	18,87802			
80	-7067	-7057	10	800	0,002	5,50	2,50	84	Collecteur Drainant Ø 400	0,095	0,69	0,66	0,000080	0,007160	0,16	0,021	0,27	1,06	19,03	73	19,03474			
	0														-,						,			

TGO - Zone d'étude des PN1-2 1-3 et 1-4

PROJET

TGO - PN3

Obs: Km 9+168 au 8+845 - Voie 1 Traversée sous voie au Km 8+945

Q100/Q10 pour les BVN

Rapport Q100/Q10 BV <2 km2 : 2
Rapport Q100/Q10 BV >= 2 km2 : 2

Pas de calcul entre 2 PT (m) 10

Coefficients de ruissellement : PK début (m) : -

9 168

Talus: 0,35 PK fin (m): - 8845
1 2 3 4 5 6 7 8 9 ### 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

				Longueur	Pente du	Large	ur (m)				Q Rat	Co	ef C	Surfa	ce (km²)					CALCUL				BVI	√N	
Tronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL		Nature du DL	Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)		ntensité (mm/h)	Somme des TC Unit	Q pointe	s c	с тс	гс
1	-9168	-9158	10	10	0,009	5,00	3,00	57		FBPB M60-15 mini	0,001	0,66	0,66	0,000080	0,000080	0,83	0,000	0,02	0,16	10,00	92	0,83				
2	-9158	-9148	10	20	0,009	5,00	3,00	57		FBPB M60-15 mini	0,003	0,66	0,66	0,000080	0,000160	0,83	0,000	0,02	0,31	10,00	92	1,67				
3	-9148	-9138	10	30	0,009	5,00	3,00	57		FBPB M60-15 mini	0,004	0,66	0,66	0,000080	0,000240	0,53	0,001	0,02	0,47	10,00	92	2,20				
1	-9138	-9128	10	40	0,009	5,00	3,00	57		FBPB M60-15 mini	0,005	0,66	0,66	0,000080	0,000320	0,36	0,001	0,02	0,62	10,00	92	2,56				
	-9128	-9118	10	50	0,009	5,00	3,00	57		FBPB M60-15 mini	0,007	0,66	0,66	0,000080	0,000400	0,27	0,001	0,02	0,78	10,00	92	2,83				
	-9118	-9108	10	60	0,009	5,00	3,00	57		FBPB M60-15 mini	0,008	0,66	0,66	0,000080	0,000480	0,21	0,001	0,02	0,93	10,00	92	3,04				
7	-9108	-9098	10	70	0,009	5,00	3,00	57		FBPB M60-15 mini	0,009	0,66	0,66	0,000080	0,000560	0,18	0,002	0,02	1,09	10,00	92	3,22				
3	-9098	-9088	10	80	0,009	5,00	3,00	57		FBPB M60-15 mini	0,011	0,66	0,66	0,000080	0,000640	0,15	0,002	0,02	1,25	10,00	92	3,37				
)	-9088	-9078	10	90	0,009	5,00	3,00	57		FBPB M60-15 mini	0,012	0,66	0,66	0,000080	0,000720	0,13	0,002	0,06	0,57	10,00	92	3,51				
0	-9078	-9068	10	100	0,009	5,00	3,00	57		FBPB M60-15 mini	0,014	0,66	0,66	0,000080	0,000800	0,29	0,002	0,06	0,64	10,00	92	3,80				
1	-9068	-9058	10	110	0,009	5,00	3,00	57		FBPB M60-15 mini	0,015	0,66	0,66	0,000080	0,000880	0,26	0,003	0,06	0,70	10,00	92	4,06				
2	-9058	-9048	10	120	0,010	5,00	4,00	74		Buse béton Ø 300	0,016	0,63	0,66	0,000090	0,000970	0,24	0,002	0,09	0,99	10,00	92	4,29				
	-9048	-9038	10	130	0,010	5,00	4,00	57		FBPB M60-15 mini	0,018	0,63	0,66	0,000090	0,001060	0,17	0,003	0,06	0,84	10,00	92	4,46				
	-9038	-9028	10	140	0,010	5,00	4,00	57		FBPB M60-15 mini	0,019	0,63	0,65	0,000090	0,001150	0,20	0,003	0,06	0,90	10,00	92	4,66				
	-9028	-9018	10	150	0,010	5,00	4,00	57		FBPB M60-15 mini	0,021	0,63	0,65	0,000090	0,001240	0,18	0,003	0,06	0,97	10,00	92	4,85				
	-9018	-9008	10	160	0,010	5,00	4,00	57		FBPB M60-15 mini	0,022	0,63	0,65	0,000090	0,001330	0,17	0,004	0,08	0,75	10,00	92	5,02				<i></i>
,	-9008	-8998	10	170	0,010	5,00	4,00	57		FBPB M60-15 mini	0,024	0,63	0,65	0,000090	0,001420	0,22	0,004	0,08	0,79	10,00	92	5,24				
	-8998	-8988	10	180	0,010	5,00	4,00	57		FBPB M60-15 mini	0,025	0,63	0,65	0,000090	0,001510	0,21	0,004	0,08	0,84	10,00	92	5,45				7
	-8988	-8978	10	190	0,010	5,00	4,00	57		FBPB M60-15 mini	0,026	0,63	0,65	0,000090	0,001600	0,20	0,004	0,08	0,89	10,00	92	5,65				
	-8978	-8968	10	200	0,010	5,00	1,50	57		FBPB M60-15 mini	0,028	0,73	0,65	0,000065	0,001665	0,19	0,005	0,08	0,93	10,00	92	5,84				
	-8968	-8958	10	210	0,010	5,00	1,50	57		FBPB M60-15 mini	0,029	0,73	0,65	0,000065	0,001730	0,18	0,005	0,08	0,97	10,00	92	6,02				"
	-8958	-8948	10	220	0,010	5,00	1,50	57		FBPB M60-15 mini	0,030	0,73	0,66	0,000065	0,001795	0,17	0,005	0,08	1,01	10,00	92	6,19				7
	-8948	-8938	10	230	0,010	5,00	1,50	57		FBPB M60-15 mini	0,031	0,73	0,66	0,000065	0,001860	0,16	0,005	0,08	1,05	10,00	92	6,35				
	-8938	-8928	10	240	0,010	5,00	1,50	57		FBPB M60-15 mini	0,033	0,73	0,66	0,000065	0,001925	0,16	0,005	0,11	0,85	10,00	92	6,51				
	-8928	-8918	10	250	0,010	5,00	1,50	57		FBPB M60-15 mini	0,034	0,73	0,66	0,000065	0,001990	0,20	0,006	0,11	0,89	10,00	92	6,70				ľ
	-8918	-8908	10	260	0,010	5,00	1,50	57		FBPB M60-15 mini	0,035	0,73	0,67	0,000065	0,002055	0,19	0,006	0,11	0,92	10,00	92	6,89				"
	-8908	-8898	10	270	0,010	5,00	1,50	57		FBPB M60-15 mini	0,036	0,73	0,67	0,000065	0,002120	0,18	0,006	0,11	0,95	10,00	92	7,07				_
	-8898	-8888	10	280	0,010	5,00	1,50	57		FBPB M60-15 mini	0,037	0,73	0,67	0,000065	0,002185	0,18	0,006	0,11	0,98	10,00	92	7,249542				
	-8888	-8878	10	290	0,010	5,00	1,50	57		FBPB M60-15 mini	0,039	0,73	0,67	0,000065	0,002250	0,17	0,006	0,11	1,01	10,00	92	7,419202		· /		
	-8878	-8868	10	300	0,010	5,00	1,50	57	<u> </u>	FBPB M60-15 mini	0,040	0,73	0,67	0,000065	0,002315	0,16	0,007	0,11	1,04	10,00	92	7,583811				
	-8868	-8858	10	310	0,010	5,00	1,50	57	1	FBPB M60-15 mini	0,041	0,73	0,68	0,000065	0,002380	0,16	0,007	0,11	1,08	10,00	92	7,743383				
2	-8858	-8848	10	320	0,010	5,00	1,50	57	"	FBPB M60-15 mini	0,042	0,73	0,68	0,000065	0,002445	0,15	0,007	0,11	1,11	10,00	92	7,898216				
3	-8848	-8838	10	330	0,010	5,00	1,50	57	"	FBPB M60-15 mini	0,043	0,73	0,68	0,000065	0,002510	0.15	0.007	0.11	1.14	10.00	92	8,048584				

N° Tronçon PK début (m) PK fin (m) Longueur tronçon (m) PH début (m) PK fin (m) Code du DL

Nature du DL Q Rat Total (m³/s)
 Coef C
 Surface (km²)
 CALCUL
 SBVN

 Pondéré
 Cumulé
 Tronçon
 Cumulée
 TC tronçon (min)
 SR23 cible
 He(m)
 V (m/s)
 TC Calc cumulé (mm/h)
 Intensité (mm/h)
 Q pointe
 S C
 TC T Retour

PROJET

TGO - PN3

Obs: Km 9+195 au 8+845 - Voie 2 Traversée sous voie au Km 8+945

10

Q100/Q10 pour les BVN

Rapport Q100/Q10 BV <2 km2 : 2
Rapport Q100/Q10 BV >= 2 km2 : 2

27 28 29 30 31

Pas de calcul entre 2 PT (m)

Coefficients de ruissellement : PK début (m) : -

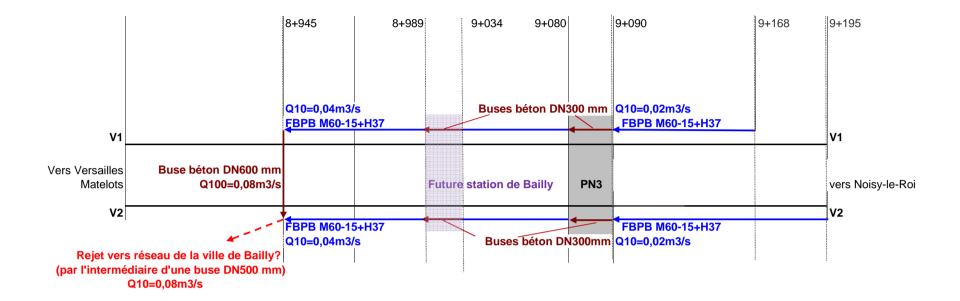
9 195

13

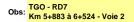
Plateforme: 0,85 Talus: 0,35 PK fin (m): - 8845 1 2 3 4 5 6 7 8 9 #

				Longueur	Pente du	Large	eur (m)				Q Rat	Coe	ef C	Surfa	ice (km²)					CALCUL			BVN	
N° Tronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL		Nature du DL	Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min) Intensité (mm/h)	Somme des TC Unit	Q pointe S	СТ	T Retour
1	-9195	-9185	10	10	0,009	5,00	3,00	58	1	FBPB M60-15 + maxi	0,001	0,66	0,66	0,000080	0,000080	0,83	0.000	0,02	0,14	10,00 92	0.83			
2	-9185	-9175	10	20	0,009	5,00	3,00	58	***********	FBPB M60-15 + maxi	0,003	0,66	0,66	0,000080	0,000160	0.83	0.000	0.02	0.28	10.00 92	1.67			
3	-9175	-9165	10	30	0,009	5,00	3,00	58		FBPB M60-15 + maxi	0,004	0,66	0,66	0,000080	0,000240	0.59	0.001	0.02	0.42	10.00 92	2.26			
4	-9165	-9155	10	40	0,009	5,00	3,00	58		FBPB M60-15 + maxi	0,005	0,66	0,66	0,000080	0,000320	0,39	0.001	0,02	0,56	10,00 92	2.65			
5	-9155	-9145	10	50	0,009	5,00	3,00	58		FBPB M60-15 + maxi	0,007	0,66	0,66	0,000080	0,000400	0,30	0,001	0,02	0,70	10,00 92	2,95			
6	-9145	-9135	10	60	0,009	5,00	3,00	58		FBPB M60-15 + maxi	0,008	0,66	0,66	0,000080	0,000480	0,24	0,001	0,02	0,84	10,00 92	3,19			
7	-9135	-9125	10	70	0,009	5,00	3,00	58		FBPB M60-15 + maxi	0,009	0,66	0,66	0,000080	0,000560	0,20	0,002	0,02	0,98	10,00 92	3,38			
8	-9125	-9115	10	80	0,009	5,00	3,00	58		FBPB M60-15 + maxi	0,011	0,66	0,66	0,000080	0,000640	0,17	0,002	0,02	1,13	10,00 92	3,55			
9	-9115	-9105	10	90	0,009	5,00	3,00	58		FBPB M60-15 + maxi	0,012	0,66	0,66	0,000080	0,000720	0,15	0,002	0,02	1,27	10,00 92	3,70			
10	-9105	-9095	10	100	0,009	5,00	3,00	58	<u> </u>	FBPB M60-15 + maxi	0,014	0,66	0,66	0,000080	0,000800	0,13	0,002	0,06	0,58	10,00 92	3,83			
11	-9095	-9085	10	110	0,009	5,00	3,00	58		FBPB M60-15 + maxi	0,015	0,66	0,66	0,000080	0,000880	0,29	0,003	0,06	0,63	10,00 92	4,12			
12	-9085	-9075	10	120	0,009	5,00	3,00	58		FBPB M60-15 + maxi	0,016	0,66	0,66	0,000080	0,000960	0,26	0,003	0,06	0,69	10,00 92	4,38			
13	-9075	-9065	10	130	0,009	5,00	3,00	58		FBPB M60-15 + maxi	0,018	0,66	0,66	0,000080	0,001040	0,24	0,003	0,06	0,75	10,00 92	4,63			
14	-9065	-9055	10	140	0,009	5,00	3,00	58		FBPB M60-15 + maxi	0,019	0,66	0,66	0,000080	0,001120	0,22	0,003	0,06	0,81	10,00 92	4,85			
15	-9055	-9045	10	150	0,010	5,00	3,30	58		FBPB M60-15 + maxi	0,020	0,65	0,66	0,000083	0,001203	0,21	0,003	0,06	0,86	10,00 92	5,05			
16	-9045	-9035	10	160	0,010	5,00	3,30	58		FBPB M60-15 + maxi	0,022	0,65	0,66	0,000083	0,001286	0,19	0,004	0,06	0,92	10,00 92	5,25			
17	-9035	-9025	10	170	0,010	5,00	3,30	58		FBPB M60-15 + maxi	0,023	0,65	0,66	0,000083	0,001369	0,18	0,004	0,06	0,98	10,00 92	5,43			
18	-9025	-9015	10	180	0,010	5,00	4,00	58		FBPB M60-15 + maxi	0,025	0,63	0,66	0,000090	0,001459	0,17	0,004	0,08	0,80	10,00 92	5,60			
19	-9015	-9005	10	190	0,010	5,00	4,00	58		FBPB M60-15 + maxi	0,026	0,63	0,66	0,000090	0,001549	0,21	0,004	0,08	0,85	10,00 92	5,81			
20	-9005	-8995	10	200	0,010	5,00	1,50	58		FBPB M60-15 + maxi	0,027	0,73	0,66	0,000065	0,001614	0,20	0,005	0,08	0,89	10,00 92	6,00	<mark></mark>		
21	-8995	-8985	10	210	0,010	5,00	2,20	58		FBPB M60-15 + maxi	0,028	0,70	0,66	0,000072	0,001686	0,19	0,005	0,08	0,93	10,00 92	6,19			
22	-8985	-8975	10	220	0,010	5,00	2,20	58		FBPB M60-15 + maxi	0,030	0,70	0,66	0,000072	0,001758	0,18	0,005	0,08	0,98	10,00 92	6,37			
23	-8975	-8965	10	230	0,010	5,00	2,20	58		FBPB M60-15 + maxi	0,031	0,70	0,66	0,000072	0,001830	0,17	0,005	0,09	0,88	10,00 92	6,54			
24	-8965	-8955	10	240	0,010	5,00	2,20	58		FBPB M60-15 + maxi	0,032	0,70	0,67	0,000072	0,001902	0,19	0,005	0,09	0,92	10,00 92	6,73			
25	-8955	-8945	10	250	0,010	5,00	2,20	58		FBPB M60-15 + maxi	0,034	0,70	0,67	0,000072	0,001974	0,18	0,006	0,09	0,96	10,00 92	6,91	<mark></mark>		
26	-8945	-8935	10	260	0,010	5,00	2,20	58		FBPB M60-15 + maxi	0,035	0,70	0,67	0,000072	0,002046	0,17	0,006	0,09	0,99	10,00 92	7,08			
27	-8935	-8925	10	270	0,010	5,00	2,20	58		FBPB M60-15 + maxi	0,036	0,70	0,67	0,000072	0,002118	0,17	0,006	0,10	0,91	10,00 92	7,25			
28	-8925	-8915	10	280	0,010	5,00	2,20	58		FBPB M60-15 + maxi	0,037	0,70	0,67	0,000072	0,002190	0,18	0,006	0,10	0,94	10,00 92	7,433027			
29	-8915	-8905	10	290	0,010	5,00	2,20	58		FBPB M60-15 + maxi	0,039	0,70	0,67	0,000072	0,002262	0,18	0,006	0,10	0,97	10,00 92	7,610187			
30	-8905	-8895	10	300	0,010	5,00	2,20	58		FBPB M60-15 + maxi	0,040	0,70	0,67	0,000072	0,002334	0,17	0,007	0,10	1,00	10,00 92	7,781484		ann	
31	-8895	-8885	10	310	0,010	5,00	2,20	58		FBPB M60-15 + maxi	0,041	0,70	0,67	0,000072	0,002406	0,17	0,007	0,10	1,04	10,00 92	7,947435			
32	-8885	-8875	10	320	0,010	5,00	2,20	58		FBPB M60-15 + maxi	0,043	0,70	0,67	0,000072	0,002478	0,16	0,007	0,10	1,07	10,00 92	8,108235			
33	-8875	-8865	10	330	0,010	5,00	2,20	58		FBPB M60-15 + maxi	0,044	0,70	0,67	0,000072	0,002550	0,16	0,007	0,11	0,99	10,00 92	8,264193			
34	-8865	-8855	10	340	0,010	5,00	2,20	58		FBPB M60-15 + maxi	0,045	0,70	0,67	0,000072	0,002622	0,17	0,008	0,11	1,01	10,00 92	8,433232			
35	-8855	-8845	10	350	0,010	5,00	2,20	58		FBPB M60-15 + maxi	0,046	0,70	0,67	0,000072	0,002694	0,16	0,008	0,11	1,04	10,00 92	8,597469		ann	
1	0				L				l															

Q rationnel


N° Tronçon PK début (m) PK fin (m) Longueur tronçon (m) PK début (m) PK fin (m) PK fin (m) Longueur cumulée (m) Plateforme Talus Code du DL

Nature du DL Q Rat Total (m³/s)


							0,50								
Coef C		Surface (km²)		CALCUL							BVN				
Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	Intensité (mm/h)	Somme des TC Unit	Q pointe	s	С	тс	T Retour

.....

.....

PROJET

TC mini = 10 I maxi (mm/h) 91,9

Coefficients de Montana : Paris Montsouris

2 = 823 2 = 0,784

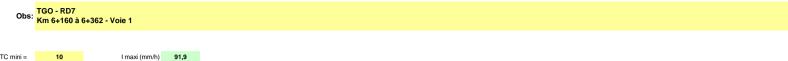
Pas de calcul entre 2 PT (m) 10

Coefficients de ruissellement : PK début (m) : 5883

Plateforme : 0,85
Talus : 0,35
PK fin (m) : 6524

1 2 3 4 5 6 7 8 9 ### 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

Q100/Q10 pour les BVN


Rapport Q100/Q10 BV <2 km2 :

Rapport Q100/Q10 BV >= 2 km2

					0,002			1										0,50		_				
				Longueur	Pente du	Large	eur (m)			Q Rat	Coe	ef C	Surfa	ice (km²)					CALCUL			B'	VN	
N° Tronçor	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée	tronçon	Plateforme	Talus	Code du DL	Nature du DL	Total	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon	SR23	He(m)	V (m/s)	TC Calc Intensi	Somme des TC	Q		с тс	т
			, , ,	(m)	(m/m)	Flateforffle	Talus			(m³/s)	Fondere	Cumule	Tronçon	cumulee	(min)	cible	He(III)	V (111/5)	(min) (mm/i) des 10 Unit	pointe	l ° l	C IC	Retour
	1		1																· · · · ·					
1	5883	5893	10	10	0,010	6,00	12,00	58	FBPB M60-15 maxi	0,002	0,52	0,52	0,000180	0,000180	0,83	0,000	0,02	0,25	10,00 92	0,83		<u> </u>		
2	5893	5903	10	20	0,010	6,00	12,00	58	FBPB M60-15 maxi	0,005	0,52	0,52	0,000180	0,000360	0,67	0,001	0,02	0,49	10,00 92	1,51				
3	5903	5913	10	30	0,010	6,00	12,00	58	FBPB M60-15 maxi	0,007	0,52	0,52	0,000180	0,000540	0,34	0,001	0,02	0,74	10,00 92	1,84				
4	5913	5923	10	40	0,010	6,00	12,00	58	FBPB M60-15 maxi	0,009	0,52	0,52	0,000180	0,000720	0,23	0,002	0,02	0,99	10,00 92	2,07				
5	5923	5933	10	50	0,010	6,00	12,00	58	FBPB M60-15 maxi	0,012	0,52	0,52	0,000180	0,000900	0,17	0,002	0,02	1,23	10,00 92	2,24				
6	5933	5943	10	60	0,010	6,00	12,00	58	FBPB M60-15 maxi	0,014	0,52	0,52	0,000180	0,001080	0,14	0,002	0,06	0,61	10,00 92	2,37				
7	5943	5953	10	70	0,010	6,00	12,00	58	FBPB M60-15 maxi	0,017	0,52	0,52	0,000180	0,001260	0,27	0,003	0,06	0,71	10,00 92	2,65				
8	5953	5963	10	80	0,010	6,00	12,00	58	FBPB M60-15 maxi	0,019	0,52	0,52	0,000180	0,001440	0,24	0,003	0,06	0,81	10,00 92	2,88				
9	5963	5973	10	90	0,010	6,00	12,00	58	FBPB M60-15 maxi	0,021	0,52	0,52	0,000180	0,001620	0,21	0,004	0,06	0,91	10,00 92	3,09				
10	5973	5983	10	100	0,010	6,00	12,00	58	FBPB M60-15 maxi	0,024	0,52	0,52	0,000180	0,001800	0,18	0,004	0,08	0,78	10,00 92	3,27				
11	5983	5993	10	110	0,010	6,00	12,00	58	FBPB M60-15 maxi	0,026	0,52	0,52	0,000180	0,001980	0,21	0,004	0,08	0,86	10,00 92	3,49				
12	5993	6003	10	120	0,010	6,00	12,00	58	FBPB M60-15 maxi	0,028	0,52	0,52	0,000180	0,002160	0,19	0,005	0,08	0,93	10,00 92	3,68				
13	6003	6013	10	130	0,010	6,00	6,00	58	FBPB M60-15 maxi	0,030	0,60	0,52	0,000120	0,002280	0,18	0,005	0,09	0,86	10,00 92	3,86				
14	6013	6023	10	140	0,010	6,00	6,00	58	FBPB M60-15 maxi	0,032	0,60	0,53	0,000120	0,002400	0,19	0,005	0,09	0,92	10,00 92	4,05				
15	6023	6033	10	150	0,010	6,00	6,00	58	FBPB M60-15 maxi	0,034	0,60	0,53	0,000120	0,002520	0,18	0,006	0,09	0,97	10,00 92	4,24				
16	6033	6043	10	160	0,010	6,00	6,00	58	FBPB M60-15 maxi	0,036	0,60	0,53	0,000120	0,002640	0,17	0,006	0,09	1,02	10,00 92	4,41				
17	6043	6053	10	170	0,010	6,00	6,00	58	FBPB M60-15 maxi	0,038	0,60	0,53	0,000120	0,002760	0,16	0,006	0,10	0,95	10,00 92	4,57				
18	6053	6063	10	180	0,010	6,00	6,00	58	FBPB M60-15 maxi	0,040	0,60	0,54	0,000120	0,002880	0,18	0,007	0,10	0,99	10,00 92	4,75				
19	6063	6073	10	190	0,010	6,00	6,00	58	FBPB M60-15 maxi	0,041	0,60	0,54	0,000120	0,003000	0,17	0,007	0,10	1,04	10,00 92	4,92				
20	6073	6083	10	200	0,010	6,00	6,00	58	FBPB M60-15 maxi	0,043	0,60	0,54	0,000120	0,003120	0,16	0,007	0,11	0,97	10,00 92	5,08				
21	6083	6093	10	210	0,010	6,00	6,00	58	FBPB M60-15 maxi	0,045	0,60	0,54	0,000120	0,003240	0,17	0,008	0,11	1,01	10,00 92	5,25				
22	6093	6103	10	220	0,010	6,00	6,00	58	FBPB M60-15 maxi	0,047	0,60	0,55	0,000120	0,003360	0,16	0,008	0,11	1,05	10,00 92	5,41				
23	6103	6113	10	230	0,010	6,00	6,00	58	FBPB M60-15 maxi	0,049	0,60	0,55	0,000120	0,003480	0,16	0,008	0,11	1,09	10,00 92	5,570493	3			
24	6113	6123	10	240	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,051	0,60	0,55	0,000120	0,003600	0,15	0,007	0,10	1,27	10,00 92	5,722786	;			
25	6123	6133	10	250	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,052	0,60	0,55	0,000120	0,003720	0,13	0,007	0,10	1,32	10,00 92	5,854113	3			
26	6133	6143	10	260	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,054	0,60	0,55	0,000120	0,003840	0,13	0,007	0,11	1,22	10,00 92	5,980833	3			
27	6143	6153	10	270	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,056	0,60	0,55	0,000120	0,003960	0,14	0,008	0,11	1,26	10,00 92	6,117521				
28	6153	6163	10	280	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,058	0,60	0,56	0,000120	0,004080	0,13	0,008	0,11	1,30	10,00 92	6,249726	;			
29	6163	6173	10	290	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,060	0,60	0,56	0,000120	0,004200	0,13	0,008	0,11	1,34	10,00 92	6,377845	,			
30	6173	6183	10	300	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,062	0,60	0,56	0,000120	0,004320	0,12	0,008	0,12	1,25	10,00 92	6,502022	!			
31	6183	6193	10	310	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,063	0,60	0,56	0,000120	0,004440	0,13	0,009	0,12	1,29	10,00 92	6,635063	3			
32	6193	6203	10	320	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,065	0,60	0,56	0,000120	0,004560	0,13	0,009	0,12	1,33	10,00 92	6,764248	3			
33	6203	6213	10	330	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,067	0,60	0,56	0,000120	0,004680	0,13	0,009	0,12	1,36	10,00 92	6,889794	ı			
34	6213	6223	10	340	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,069	0,60	0,56	0,000120	0,004800	0,12	0,009	0,12	1,40	10,00 92	7,012006	i			
35	6223	6233	10	350	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,071	0,60	0,56	0,000120	0,004920	0,12	0,010	0,14	1,31	10,00 92	7,130959)			
36	6233	6243	10	360	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,073	0,60	0,56	0,000120	0,005040	0,13	0,010	0,14	1,35	10,00 92	7,25777				

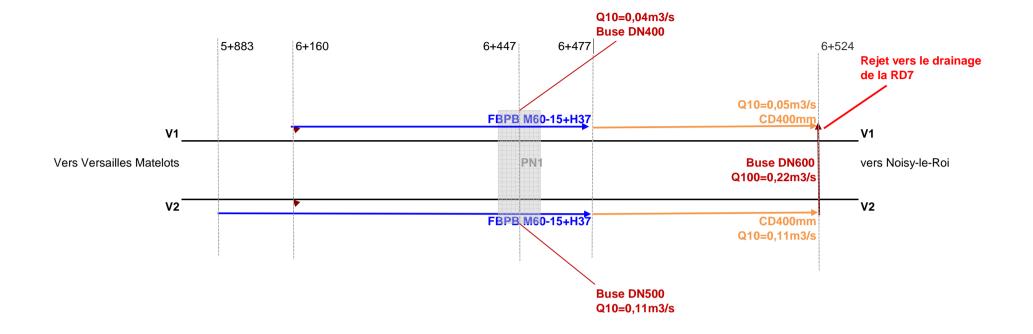
					0,002													0,50						
				Longueur	Pente du	Large	ur (m)			Q Rat	Coe	ef C	Surfa	ce (km²)				<u> </u>	CALCUL			BVN		
N° Tronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL	Nature du DL	Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min) Intensité (mm/h)	Somme des TC Unit	Q pointe	s c	TC Reto	our
37	6243	6253	10	370	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,074	0,60	0,57	0,000120	0,005160	0,12	0,010	0,14	1,38	10,00 92	7,381371				
38	6253	6263	10	380	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,076	0,60	0,57	0,000120	0,005280	0,12	0,010	0,14	1,42	10,00 92	7,502024				
39	6263	6273	10	390	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,078	0,60	0,57	0,000120	0,005400	0,12	0,011	0,14	1,45	10,00 92	7,61977				
40	6273	6283	10	400	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,080	0,60	0,57	0,000120	0,005520	0,11	0,011	0,15	1,37	10,00 92	7,734746				
41	6283	6293	10	410	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,082	0,60	0,57	0,000120	0,005640	0,12	0,011	0,15	1,40	10,00 92	7,856777				
42	6293	6303	10	420	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,084	0,60	0,57	0,000120	0,005760	0,12	0,011	0,15	1,43	10,00 92	7,976065				
43	6303	6313	10	430	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,085	0,60	0,57	0,000120	0,005880	0,12	0,012	0,15	1,46	10,00 92	8,092833	-			
44	6313	6323	10	440	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,087	0,60	0,57	0,000120	0,006000	0,11	0,012	0,15	1,49	10,00 92	8,207089				
45	6323	6333	10	450	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,089	0,60	0,57	0,000120	0,006120	0,11	0,012	0,16	1,41	10,00 92	8,318941				
46	6333	6343	10	460	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,091	0,60	0,57	0,000120	0,006240	0,12	0,012	0,16	1,44	10,00 92	8,437192				
47	6343	6353	10	470	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,093	0,60	0,57	0,000120	0,006360	0,12	0,013	0,16	1,47	10,00 92	8,553054				
48	6353	6363	10	480	0,015	6,00	6,00	58	FBPB M60-15 maxi	0,095	0,60	0,57	0,000120	0,006480	0,11	0,013	0,16	1,50	10,00 92	8,66672				
49	6363	6373	10	490	0,010	5,00	2,00	58	FBPB M60-15 maxi	0,096	0,71	0,57	0,000070	0,006550	0,11	0,016	0,19	1,24	10,00 92	8,77818				
50	6373	6383	10	500	0,010	5,00	2,00	58	FBPB M60-15 maxi	0,097	0,71	0,58	0,000070	0,006620	0,13	0,016	0,19	1,26	10,00 92	8,912699				
51	6383	6393	10	510	0,010	5,00	2,00	58	FBPB M60-15 maxi	0,098	0,71	0,58	0,000070	0,006690	0,13	0,016	0,19	1,27	10,00 92	9,045468				
52	6393	6403	10	520	0,010	5,00	2,00	58	FBPB M60-15 maxi	0,100	0,71	0,58	0,000070	0,006760	0,13	0,017	0,19	1,29	10,00 92	9,176534				
53	6403	6413	10	530	0,010	5,00	2,00	58	FBPB M60-15 maxi	0,101	0,71	0,58	0,000070	0,006830	0,13	0,017	0,19	1,30	10,00 92	9,306051				
54	6413	6423	10	540	0,010	5,00	2,00	58	FBPB M60-15 maxi	0,102	0,71	0,58	0,000070	0,006900	0,13	0,017	0,19	1,32	10,00 92	9,433947				
55	6423	6433	10	550	0,010	5,00	2,00	58	FBPB M60-15 maxi	0,103	0,71	0,58	0,000070	0,006970	0,13	0,017	0,19	1,34	10,00 92	9,560262				
56	6433	6443	10	560	0,010	5,00	2,00	58	FBPB M60-15 maxi	0,105	0,71	0,58	0,000070	0,007040	0,12	0,017	0,21	1,28	10,00 92	9,685035				
57	6443	6453	10	570	0,010	5,00	2,00	58	FBPB M60-15 maxi	0,106	0,71	0,58	0,000070	0,007110	0,13	0,018	0,21	1,29	10,00 92	9,815738				
58	6453	6463	10	580	0,010	5,00	2,00	58	FBPB M60-15 maxi	0,107	0,71	0,59	0,000070	0,007180	0,13	0,018	0,21	1,31	10,00 92	9,944882				
59	6463	6473	10	590	0,010	5,00	2,00	58	FBPB M60-15 maxi	0,108	0,71	0,59	0,000070	0,007250	0,13	0,018	0,21	1,32	10,07 92	10,07251				
60	6473	6483	10	600	0,002	5,00	2,00	84	Collecteur Drainant Ø 400	0,109	0,71	0,59	0,000070	0,007320	0,13	0,024	0,30	1,09	10,20 91	10,19908				
61	6483	6493	10	610	0,002	5,00	2,00	84	Collecteur Drainant Ø 400	0,110	0,71	0,59	0,000070	0,007390	0,15	0,025	0,30	1,09	10,35 91	10,35202				
62	6493	6503	10	620	0,002	5,00	2,00	84	Collecteur Drainant Ø 400	0,110	0,71	0,59	0,000070	0,007460	0,15	0,025	0,30	1,09	10,51 90	10,50509				
63	6503	6513	10	630	0,002	5,00	2,00	84	Collecteur Drainant Ø 400	0,111	0,71	0,59	0,000070	0,007530	0,15	0,025	0,30	1,09	10,66 90	10,65777				
64	6513	6523	10	640	0,002	5,00	2,00	84	Collecteur Drainant Ø 400	0,112	0,71	0,59	0,000070	0,007600	0,15	0,025	0,30	1,09	10,81 89	10,81058				
65	6523	6533	10	650	0,002	5,00	2,00	84	Collecteur Drainant Ø 400	0,112	0,71	0,59	0,000070	0,007670	0,15	0,025	0,31	1,09	10,96 89	10,9635				
	0																			•				

PROJET

Coefficients de Montana : **Paris Montsouris**

TC mini =

Montana pour T = Pour 25 min<Tc<6 heures : Pour Tc < 25 min : a1 = 211 823 0,361 0,784 Pas de calcul entre 2 PT (m)


Q100/Q10 pour les BVN Rapport Q100/Q10 BV <2 km2 : Rapport Q100/Q10 BV >= 2 km2 :

Coefficients de ruissellement : PK début (m): 6 160 Plateforme : 0,85

Talus : 0,35 PK fin (m): 6 362

					0,002	Large	ur (m)						Coef C		Surfa	ce (km²)				0,50	041.0111	1					$\overline{}$
			Longueur	Longueur	Pente du	Larget	ar (111 <i>)</i>				Q Rat		COELC	,	Julia	ce (KIII-)					CALCUL				В	VN	
N° Tronçon	PK début (m)	PK fin (m)	tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL		Nature du DL	Total (m³/s)	Pond	éré C	umulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	Intensité (mm/h)	Somme des TC Unit	Q pointe	s	С ТС	T Retour
1	6160	6170	10	10	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,002	0,6	7	0,67	0,000095	0,000095	0.83	0.000	0.02	0.19	10.00	92	0.83				
2	6170	6180	10	20	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,003	0,6	7	0,67	0,000095	0,000190	0,83	0,000	0,02	0,37	10,00	92	1,67				
3	6180	6190	10	30	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,005	0,6	7	0,67	0,000095	0,000285	0,45	0,001	0,02	0,56	10,00	92	2,11				
4	6190	6200	10	40	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,006	0,6	7	0,67	0,000095	0,000380	0,30	0,001	0,02	0,74	10,00	92	2,41				
5	6200	6210	10	50	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,008	0,6	7	0,67	0,000095	0,000475	0,22	0,001	0,02	0,93	10,00	92	2,64				
6	6210	6220	10	60	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,010	0,6	7	0,67	0,000095	0,000570	0,18	0,001	0,02	1,11	10,00	92	2,82				
7	6220	6230	10	70	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,011	0,6	7	0,67	0,000095	0,000665	0,15	0,002	0,02	1,30	10,00	92	2,97				
8	6230	6240	10	80	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,013	0,6	7	0,67	0,000095	0,000760	0,13	0,002	0,02	1,49	10,00	92	3,09				
9	6240	6250	10	90	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,015	0,6	7	0,67	0,000095	0,000855	0,11	0,002	0,06	0,68	10,00	92	3,21				
10	6250	6260	10	100	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,016	0,6	7	0,67	0,000095	0,000950	0,24	0,002	0,06	0,76	10,00	92	3,45				
11	6260	6270	10	110	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,018	0,6	7	0,67	0,000095	0,001045	0,22	0,002	0,06	0,84	10,00	92	3,67				
12	6270	6280	10	120	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,019	0,6	7	0,67	0,000095	0,001140	0,20	0,003	0,06	0,91	10,00	92	3,87				
13	6280	6290	10	130	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,021	0,6	7	0,67	0,000095	0,001235	0,18	0,003	0,06	0,99	10,00	92	4,05				
14	6290	6300	10	140	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,023	0,6	7	0,67	0,000095	0,001330	0,17	0,003	0,06	1,06	10,00	92	4,22				
15	6300	6310	10	150	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,024	0,6	7	0,67	0,000095	0,001425	0,16	0,003	0,06	1,14	10,00	92	4,38				
16	6310	6320	10	160	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,026	0,6	7	0,67	0,000095	0,001520	0,15	0,004	0,08	0,87	10,00	92	4,52				
17	6320	6330	10	170	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,027	0,6	7	0,67	0,000095	0,001615	0,19	0,004	0,08	0,93	10,00	92	4,71				
18	6330	6340	10	180	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,029	0,6	7	0,67	0,000095	0,001710	0,18	0,004	0,08	0,98	10,00	92	4,89				
19	6340	6350	10	190	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,031	0,6	7	0,67	0,000095	0,001805	0,17	0,004	0,08	1,04	10,00	92	5,06				
20	6350	6360	10	200	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,032	0,6	7	0,67	0,000095	0,001900	0,16	0,004	0,08	1,09	10,00	92	5,22				
21	6360	6370	10	210	0,015	6,00	3,50	57		FBPB M60-15 +H58	0,034	0,6	7	0,67	0,000095	0,001995	0,15	0,005	0,08	1,14	10,00	92	5,38				
	0								.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																		

Q Rat
Total
(m³/s)

PROJET

Obs: TGO - Chemin des princes Km 9+645 (aval PRO) au 9+239 (Aqueduc) - Voie 2

TC mini = 10 I maxi (mm/h) 91,9

Coefficients de ruissellement :

Coefficients de Montana : Paris Montsouris

Montana pour T = 10 ans

Pour Tc < 25 min: a1 = 211
b1 = 0,361

Pour 25 min<Tc<6 heures:

823 0,784

Q100/Q10 pour les BVN

Rapport Q100/Q10 BV <2 km2 : Rapport Q100/Q10 BV >= 2 km2 :

Pas de calcul entre 2 PT (m) 10

9 655

PK début (m):

Part						0,002													0,50		_			
					Longueur	Pente du	Larg	jeur (m)			Q Rat	Co	ef C	Surfa	ice (km²)					CALCUL			BVN	
1	N° Tronço	on PK début (m)	PK fin (m)		cumulée	tronçon	Diotoformo	Talua	Code du DL	Nature du DL	Total	Dandárá	Cumulá	Transan	aumuláa	TC tronçon	SR23	Ho/m)	V (m/o)	Intensit		Q c	C TC	Т
9446 9450 95				, , , , ,	(m)	(m/m)	Plateforme	Taius			(m³/s)	Pondere	Cumule	Tronçon	cumulee	(min)	cible	He(m)	v (m/s)			pointe	CIC	Retour
9446 9450 95		OCCE	0645	10	10	0.004	E 44	9.60	EO	EDDD Meo 45 movi	0.002	0.54	0.54	0.000140	0.000140									
4-44-64-64-65 4-49	1										····											0 000	0.2 10	10
	_																					0,0599 0,008	0,3 10	10
	3																					<mark></mark>		
1	4																							
Page	5																							
9 4955 4956 10 10 0.004 4.00 8.0 8.0 95 FPP MINO 15 max 0.075 0.03 0.031 0.00194 0.0099 0.02 0.00 0.02 0.00 10.0 0.0 0.00 0.00	7																				<mark></mark>			
9 9875 9895 10 90 0.004 4.00 8.00 56 FPP MR0-15 max	,																			•	······			
10	_																					<mark></mark>		
1	Ŭ																							
13																						<mark></mark>		
9-535 9-525 10 10 10 0.004 4.00 8.00 50 FPBP M60-15 max																				•	···			
14																				•				
FPB MO-15 max 1.0																				•••••••••••				
16	1																							
17																						<mark></mark>		
18																				•••••••••••				
9 9475 9465 10 190 0.004 4.80 8.60 58 FBPB MO-15 maxi 0.150 0.53 0.33 0.00134 0.017817 0.18 0.038 0.37 1.00 10.00 92 4.88 0.0555 0.007 0.3 10 10 10 10 10 10 10 10 10 10 10 10 10																						<mark></mark>		
20																				•••••••••••		0.0555 0.007	0.0 40	
21																						0,0000 0,007	0,3 10) 10
22 9.445 9.435 10 220 0.035 4.80 8.60 58 FBPB M60-15 max 0.155 0.53 0.34 0.00134 0.018019 0.16 0.014 0.17 2.29 10.00 92 5.37 23 9.435 9.425 10 230 0.035 4.80 8.60 58 FBPB M60-15 max 0.157 0.53 0.34 0.00134 0.01813 0.07 0.014 0.17 2.31 10.00 92 5.44 24 9.425 9.415 10 240 0.005 6.00 9.00 30 Fosse Trapezoidal Revêtu 32 44-45 0.163 0.55 0.34 0.00150 0.01803 0.07 0.014 0.12 2.15 10.00 92 5.59 25 9.415 9.405 10 250 0.035 6.00 9.00 30 Fosse Trapezoidal Revêtu 32 44-45 0.163 0.55 0.34 0.00150 0.01803 0.08 0.015 0.12 2.20 10.00 92 5.59 26 9.405 9.935 10 260 0.035 6.00 9.00 30 Fosse Trapezoidal Revêtu 32 44-45 0.163 0.55 0.34 0.00150 0.01803 0.08 0.015 0.12 2.20 10.00 92 5.59 27 9.395 9.385 10 270 0.035 6.00 9.00 30 Fosse Trapezoidal Revêtu 32 44-45 0.166 0.55 0.35 0.00150 0.01803 0.08 0.015 0.12 2.20 10.00 92 5.75 28 9.385 9.375 10 280 0.005 6.00 9.00 30 Fosse Trapezoidal Revêtu 32 44-45 0.166 0.55 0.35 0.00150 0.01803 0.08 0.015 0.12 2.20 10.00 92 5.75 29 9.375 9.366 10 290 0.035 6.00 9.00 30 Fosse Trapezoidal Revêtu 32 44-45 0.168 0.55 0.35 0.00150 0.01803 0.08 0.015 0.12 2.20 10.00 92 5.82273 30 9.385 9.395 10 300 0.035 6.00 9.00 30 Fosse Trapezoidal Revêtu 32 44-45 0.168 0.55 0.35 0.00150 0.01803 0.08 0.015 0.12 2.20 10.00 92 5.82273 31 9.385 9.395 10 300 0.035 6.00 9.00 30 Fosse Trapezoidal Revêtu 32 44-45 0.172 0.55 0.35 0.00150 0.01803 0.08 0.015 0.12 2.28 10.00 92 5.870875 31 9.385 9.395 10 300 0.035 6.00 9.00 30 Fosse Trapezoidal Revêtu 32 44-45 0.174 0.55 0.35 0.00150 0.018033 0.08 0.016 0.13 2.21 10.00 92 5.870875 32 9.345 9.335 10 320 0.035 6.00 9.00 30 Fosse Trapezoidal Revêtu 32 44-45 0.174 0.55 0.35 0.00150 0.018033 0.08 0.016 0.13 2.23 10.00 92 6.12287 33 9.335 9.325 10 330 0.035 6.00 9.00 30 Fosse Trapezoidal Revêtu 32 44-45 0.176 0.55 0.35 0.00150 0.018033 0.08 0.016 0.13 2.23 10.00 92 6.12287 34 9.335 9.325 10 330 0.035 6.00 9.00 30 Fosse Trapezoidal Revêtu 32 44-45 0.176 0.55 0.35 0.00150 0.018033 0.07 0.016 0.13 2.25 10.00 92 6.12287 34 9.335 9.335 10 300 0.035 6.00 9.00 30 Fosse Trape																						<mark></mark>		
9425 9415 10 20 0.035 4.90 8.60 56 FBPB M60-15 maxi 0,157 0.53 0.34 0,000134 0.018153 0.07 0.014 0.17 2.31 10,00 92 5.44 942 9425 9415 10 240 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 32 444-5 0,159 0.55 0.34 0,000150 0.018303 0.07 0.014 0.12 2.15 10.00 92 5.52 9415 9405 10 260 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 32 444-5 0,161 0.55 0.34 0,000150 0.018403 0.08 0.015 0.12 2.20 10.00 92 5.59 9415 9415 9415 9415 9415 9415 9415 94																						<mark></mark>		
24 9425 9415 10 240 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.161 0.55 0.34 0.00150 0.018303 0.07 0.014 0.12 2.15 10.00 92 5.52 25 9415 9405 9995 10 260 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.161 0.55 0.34 0.00150 0.018453 0.08 0.014 0.12 2.18 10.00 92 5.59 26 9405 9995 10 260 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.165 0.55 0.34 0.00150 0.018003 0.08 0.015 0.12 2.20 10.00 92 5.57 27 9395 9395 9395 10 270 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.166 0.55 0.35 0.00150 0.018003 0.08 0.015 0.12 2.20 10.00 92 5.87 28 9385 9385 10 270 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.166 0.55 0.35 0.00150 0.018903 0.08 0.015 0.12 2.20 10.00 92 5.822273 29 9375 9365 10 280 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.166 0.55 0.35 0.00150 0.018903 0.08 0.015 0.12 2.23 10.00 92 5.897038 30 9365 9355 10 300 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.170 0.55 0.35 0.00150 0.01903 0.07 0.015 0.12 2.25 10.00 92 5.970875 31 9385 9385 10 300 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.170 0.55 0.35 0.00150 0.01903 0.07 0.015 0.12 2.26 10.00 92 5.970875 31 9385 9385 10 300 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.170 0.55 0.35 0.00150 0.01903 0.07 0.015 0.13 2.18 10.00 92 5.970875 31 9385 9385 10 300 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.174 0.55 0.35 0.00150 0.01903 0.08 0.016 0.13 2.21 10.00 92 6.047349 32 9345 9335 10 320 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.176 0.55 0.35 0.00150 0.01903 0.07 0.016 0.13 2.28 10.00 92 6.197543 33 9335 9335 10 320 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.176 0.55 0.36 0.00150 0.01903 0.07 0.016 0.13 2.28 10.00 92 6.197543 34 9325 9315 10 340 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.180 0.055 0.36 0.00150 0.01903 0.07 0.016 0.13 2.28 10.00 92 6.347349 35 9335 9335 10 300 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.180 0.055 0.36 0.00150 0.01903 0.07 0.016 0.1																						···-···		
25											·····									•	···			
26	25																			•••••••••		······································		
27																								
28	-										·····													
29 -9375 -9365 10 290 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.170 0.55 0.35 0.00150 0.019053 0.07 0.015 0.12 2.26 10.00 92 5.897038 30 -9365 -9355 10 300 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.172 0.55 0.35 0.00150 0.019033 0.07 0.015 0.13 2.18 10.00 92 5.8970875 31 -9355 -9345 10 310 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.174 0.55 0.35 0.00150 0.019333 0.08 0.016 0.13 2.21 10.00 92 6.047349 32 -9345 -9335 10 320 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.176 0.55 0.35 0.00150 0.019503 0.08 0.016 0.13 2.23 10.00 92 6.122897 33 -9335 -9325 10 330 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.178 0.55 0.36 0.00150 0.019503 0.08 0.016 0.13 2.28 10.00 92 6.197543 34 -9325 -9315 10 340 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.180 0.55 0.36 0.00150 0.019603 0.07 0.016 0.13 2.25 10.00 92 6.271306 35 -9315 -9305 10 350 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.180 0.55 0.36 0.00150 0.019933 0.07 0.016 0.13 2.25 10.00 92 6.271306 36 -9315 -9305 10 350 0.035 6.00 9.00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0.180 0.55 0.36 0.00150 0.019933 0.07 0.016 0.13 2.28 10.00 92 6.271306	28				-																			
90	29	-9375	-9365	10	290	0,035	6,00	9,00	30	Fossé Trapézoïdal Revêtu 3/2 44-4	5 0,170	0,55	0,35	0,000150	0,019053					•	•			
31	30			10								0,55	0,35								•			
32	31			10	310					Fossé Trapézoïdal Revêtu 3/2 44-4	5 0,174		0,35	0,000150										
33	32																				•			
34 -9325 -9315 10 340 0.035 6.00 9.00 30 Fossé Trapézoïdal Revêtu 3/2 44-45 0.180 0.55 0.36 0.000150 0.019903 0.07 0.016 0.13 2.25 10.00 92 6.271306 350 -9315 -9305 10 350 0.035 6.00 9.00 30 Fossé Trapézoïdal Revêtu 3/2 44-45 0.182 0.55 0.36 0.000150 0.019953 0.07 0.016 0.13 2.28 10.00 92 6.371306 0.000150 0.019953 0.07 0.016 0.13 2.28 10.00 92 6.345226	33	-9335		10	330	0,035	6,00	9,00	30				0,36	0,000150	0,019653									
35 -9315 9305 10 350 0,035 6,00 9,00 30 Fossé Trapézoidal Revêtu 3/2 44-45 0,182 0,55 0,36 0,000150 0,019953 0,07 0,016 0,13 2,28 10,00 92 6,345226	34	-9325		10		0,035	6,00	9,00	30	Fossé Trapézoïdal Revêtu 3/2 44-4	5 0,180		0,36	0,000150	0,019803					•				
	35	-9315		10	350	0,035			30	Fossé Trapézoïdal Revêtu 3/2 44-4	5 0,182	0,55	0,36	0,000150							•			
	36	-9305	-9295	10	360	0,035	6,00	9,00	30	Fossé Trapézoïdal Revêtu 3/2 44-4	5 0,185	0,55	0,36	0,000150	0,020103	0.07	0,016	0,13	2.31	10,00 92	6,418292			

					0,002			
				Longueur	Pente du	Large	ur (m)	
N° Tronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL
37	-9295	-9285	10	370	0,035	6,00	9,00	30
38	-9285	-9275	10	380	0,035	6,00	9,00	30
39	-9275	-9265	10	390	0,035	6,00	9,00	30
40	-9265	-9255	10	400	0,035	6,00	9,00	30
41	-9255	-9245	10	410	0,035	6,00	9,00	30
42	-9245	-9235	10	420	0,035	6,00	9,00	30
	0							

									0,50								
	Q Rat	Coe	f C	Surfa	ace (km²)					CALCUL					BVN		
Nature du DL	Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	Intensité (mm/h)	Somme des TC Unit	Q pointe	s	С	тс	T Retour
F	0.407	0.55	0.00	0.000450	0.000050												
Fossé Trapézoïdal Revêtu 3/2 44-45	0,187	 0,55	0,36	0,000150	0,020253	0,07	0,017	0,13	2,33	10,00	92	6,490525					
Fossé Trapézoïdal Revêtu 3/2 44-45	0,189	0,55	0,36	0,000150	0,020403	0,07	0,017	0,13	2,26	10,00	92	6,561943					
Fossé Trapézoïdal Revêtu 3/2 44-45	0,191	0,55	0,36	0,000150	0,020553	0,07	0,017	0,13	2,28	10,00	92	6,635835					
Fossé Trapézoïdal Revêtu 3/2 44-45	0,193	 0,55	0,37	0,000150	0,020703	0,07	0,017	0,13	2,31	10,00	92	6,708911					
Fossé Trapézoïdal Revêtu 3/2 44-45	0,195	 0,55	0,37	0,000150	0,020853	0,07	0,017	0,13	2,30	10,00	92	6,78119					
Fossé Trapézoïdal Revêtu 3/2 44-45	0,197	 0,55	0,37	0,000150	0,021003	0,07	0,018	0,13	2,32	10,00	92	6,853674					

		 .l															

PROJET

Obs: TGO - Chemin des princes Km 9+858 au 9+239 - Voie 1

TC mini = 10 I maxi (mm/h) 91,9

Coefficients de Montana : Paris Montsouris

Pas de calcul entre 2 PT (m)

Coefficients de ruissellement : PK début (m) : - 9858

Talus: 0,35 PK fin (m): - 9239
1 2 3 4 5 6 7 8 9 ### 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

Q100/Q10 pour les BVN

Rapport Q100/Q10 BV <2 km2 : Rapport Q100/Q10 BV >= 2 km2 :

					0,002														0,50							
				Longueur	Pente du	Large	eur (m)				Q Rat	Coe	ef C	Surfa	ce (km²)					CALCUL				BVI	N	
N° Tronçor	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL		Nature du DL	Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	Intensité (mm/h)	Somme des TC Unit	Q pointe	s c	тс	T Retour
1	-9858	-9848	10	10	0,002	5,41	5,00	58		FBPB M60-15 maxi	0,002	0,61	0,61	0,000104	0,000104	0,83	0.001	0,02	0.17	10.00	92	0.83				
2	-9848	-9838	10	20	0,002	5,41	5,63	58		FBPB M60-15 maxi	0,009	0,60	0,36	0,000110	0,001024	0,83	0.004	0,06	0,40	10,00	92		0.0062	BE-04 0,3	3 10	10
3	-9838	-9828	10	30	0,002	5,41	6,25	58		FBPB M60-15 maxi	0,011	0,58	0,39	0,000117	0,001141	0.41	0.004	0,08	0.37	10.00	92	2.08				
4	-9828	-9818	10	40	0,002	5,41	6,88	58		FBPB M60-15 maxi	0,013	0,57	0,40	0,000123	0,001264	0,45	0,005	0,08	0,43	10,00	92	2,53				
5	-9818	-9808	10	50	0,002	5,41	7,50	58		FBPB M60-15 maxi	0,015	0,56	0,42	0,000129	0,001393	0.39	0.006	0,09	0,42	10,00	92	2.92				
6	-9808	-9798	10	60	0,002	5,41	8,13	58		FBPB M60-15 maxi	0,017	0,55	0,43	0,000135	0,001528	0.39	0.006	0.10	0,42	10.00	92	3.32				
7	-9798	-9788	10	70	0,002	5,41	8,75	58		FBPB M60-15 maxi	0,019	0,54	0,44	0,000142	0,001670	0.40	0.007	0.10	0.47	10.00	92	3.71				
8	-9788	-9778	10	80	0,002	5,41	9,38	58		FBPB M60-15 maxi	0,021	0,53	0,45	0,000148	0,001818	0,35	0.008	0.11	0.47	10.00	92	4.07				
9	-9778	-9768	10	90	0,002	5,41	10,00	58		FBPB M60-15 maxi	0,023	0,53	0,45	0,000154	0,001972	0,36	0,008	0,12	0,46	10,00	92	4,42				
10	-9768	-9758	10	100	0,002	5,41	9,80	58		FBPB M60-15 maxi	0,025	0,53	0,46	0,000152	0,002124	0,36	0,009	0,12	0,51	10,00	92	4,78				
11	-9758	-9748	10	110	0,002	5,41	9,60	58		FBPB M60-15 maxi	0,027	0,53	0,46	0,000150	0,002274	0,33	0,010	0,14	0,50	10,00	92	5,11				
12	-9748	-9738	10	120	0,002	5,41	9,40	58		FBPB M60-15 maxi	0,029	0,53	0,47	0,000148	0,002422	0,33	0,011	0,15	0,49	10,00	92	5,45				
13	-9738	-9728	10	130	0,008	5,41	9,20	58		FBPB M60-15 maxi	0,031	0,54	0,47	0,000146	0,002568	0,34	0,006	0,09	0,88	10,00	92	5,78				
14	-9728	-9718	10	140	0,008	5,41	9,00	58		FBPB M60-15 maxi	0,033	0,54	0,47	0,000144	0,002712	0,19	0,006	0,10	0,83	10,00	92	5,97				
15	-9718	-9708	10	150	0,008	5,41	8,80	58		FBPB M60-15 maxi	0,035	0,54	0,48	0,000142	0,002855	0,20	0,006	0,10	0,88	10,00	92	6,18				
16	-9708	-9698	10	160	0,008	5,41	8,60	58		FBPB M60-15 maxi	0,037	0,54	0,48	0,000140	0,002995	0,19	0,007	0,10	0,92	10,00	92	6,37				
17	-9698	-9688	10	170	0,008	5,41	8,60	58		FBPB M60-15 maxi	0,039	0,54	0,48	0,000140	0,003135	0,18	0,007	0,10	0,97	10,00	92	6,55				
18	-9688	-9678	10	180	0,008	5,41	8,60	58		FBPB M60-15 maxi	0,041	0,54	0,49	0,000140	0,003275	0,17	0,007	0,11	0,91	10,00	92	6,72				
19	-9678	-9668	10	190	0,008	5,41	8,60	58		FBPB M60-15 maxi	0,043	0,54	0,49	0,000140	0,003415	0,18	0,008	0,11	0,96	10,00	92	6,90				
20	-9668	-9658	10	200	0,004	5,41	8,60	58		FBPB M60-15 maxi	0,045	0,54	0,49	0,000140	0,003555	0,17	0,011	0,15	0,76	10,00	92	7,07				
21	-9658	-9648	10	210	0,002	5,41	8,60	75		Buse béton Ø 400	0,057	0,54	0,44	0,000140	0,005066	0,22	0,017	0,23	0,76	10,00	92	7,29	0,0105	0,001 0,3	10	10
22	-9648	-9638	10	220	0,004	4,90	8,60	58		FBPB M60-15 maxi	0,103	0,53	0,46	0,000135	0,008761	0,22	0,026	0,28	0,93	10,00	92	7,51	0,0445	0,004 0,4	9 10	10
23	-9638	-9628	10	230	0,004	4,90	8,60	58		FBPB M60-15 maxi	0,105	0,53	0,46	0,000135	0,008896	0,18	0,027	0,28	0,95	10,00	92	7,69				
24	-9628	-9618	10	240	0,004	4,90	8,60	58		FBPB M60-15 maxi	0,107	0,53	0,46	0,000135	0,009031	0,18	0,027	0,28	0,97	10,00	92	7,87				
25	-9618	-9608	10	250	0,004	4,90	8,60	58		FBPB M60-15 maxi	0,109	0,53	0,47	0,000135	0,009166	0,17	0,028	0,29	0,94	10,00	92	8,04				
26	-9608	-9598	10	260	0,004	4,80	8,60	58		FBPB M60-15 maxi	0,111	0,53	0,47	0,000134	0,009300	0,18	0,028	0,29	0,96	10,00	92	8,22				
27	-9598	-9588	10	270	0,004	4,80	8,60	58		FBPB M60-15 maxi	0,112	0,53	0,47	0,000134	0,009434	0,17	0,029	0,29	0,97	10,00	92	8,39				
28	-9588	-9578	10	280	0,004	4,80	8,60	58		FBPB M60-15 maxi	0,114	0,53	0,47	0,000134	0,009568	0,17	0,029	0,30	0,95	10,00	92	8,562422				
29	-9578	-9568	10	290	0,004	4,80	8,60	58		FBPB M60-15 maxi	0,116	0,53	0,47	0,000134	0,009702	0,18	0,030	0,30	0,96	10,00	92	8,737998				
30	-9568	-9558	10	300	0,004	4,80	8,60	58		FBPB M60-15 maxi	0,118	0,53	0,47	0,000134	0,009836	0,17	0,030	0,30	0,98	10,00	92	8,910837				
31	-9558	-9548	10	310	0,004	4,80	8,60	58	l	FBPB M60-15 maxi	0,120	0,53	0,47	0,000134	0,009970	0,17	0,030	0,31	0,96	10,00	92	9,081169				
32	-9548	-9538	10	320	0,004	4,80	8,60	58		FBPB M60-15 maxi	0,121	0,53	0,47	0,000134	0,010104	0,17	0,031	0,31	0,97	10,00	92	9,255484				
33	-9538	-9528	10	330	0,004	4,80	8,60	58		FBPB M60-15 maxi	0,123	0,53	0,47	0,000134	0,010238	0,17	0,031	0,31	0,98	10,00	92	9,427202				
34	-9528	-9518	10	340	0,004	4,80	8,60	58		FBPB M60-15 maxi	0,125	0,53	0,47	0,000134	0,010372	0,17	0,032	0,32	0,96	10,00	92	9,596546				
35	-9518	-9508	10	350	0,004	4,80	8,60	58		FBPB M60-15 maxi	0,127	0,53	0,47	0,000134	0,010506	0,17	0,032	0,32	0,98	10,00	92	9,76972				
36	-9508	-9498	10	360	0,004	4,80	8,60	58		FBPB M60-15 maxi	0,129	0,53	0,47	0,000134	0,010640	0,17	0,033	0,32	0,99	10,00	92	9,940425				

					0,002													0,50						
				Longueur	Pente du	Large	ur (m)			Q Rat		oef C	Sur	face (km²)					CALCUL			В	VN	
N° Tronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL	Nature du DL	Total (m³/s)	Pondé	é Cumu	ılé Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)			s	с тс	T Retour
37	-9498	-9488	10	370	0,004	4,80	8,60	58	FBPB M60-15 maxi	0,130	0,53	0,47	0,000134	0,010774	0,17	0,033	0,32	1,00	10,11 9	10,1088	38			
38	-9488	-9478	10	380	0,004	4,80	8,60	58	FBPB M60-15 maxi	0,131	0,53	0,48	0,000134	0,010908	0,17	0,033	0,32	1,01	10,28 9	10,2756	64			
39	-9478	-9468	10	390	0,004	4,80	8,60	58	FBPB M60-15 maxi	0,132	0,53	0,48	0,000134	0,011042	0,17	0,034	0,33	0,98	10,44 9	10,441	11			
40	-9468	-9458	10	400	0,004	4,80	8,60	58	FBPB M60-15 maxi	0,133	0,53	0,48	0,000134	0,011176	0,17	0,034	0,33	0,99	10,61 9	10,6112	23			
41	-9458	-9448	10	410	0,004	4,80	8,60	58	FBPB M60-15 maxi	0,134	0,53	0,48	0,000134	0,011310	0,17	0,034	0,33	0,99	10,78 8	10,7800)7			
42	-9448	-9438	10	420	0,002	4,80	8,60	58	FBPB M60-15 maxi	0,135	0,53	0,48	0,000134	0,011444	0,17	0,050	0,45	0,74	10,95 8	10,9476	35			
43	-9438	-9428	10	430	0,002	4,80	8,60	58	FBPB M60-15 maxi	0,136	0,53	0,48	0,000134	0,011578	0,23	0,051	0,45	0,74	11,17 8	11,1743	32			
44	-9428	-9418	10	440	0,002	4,80	8,60	60	FBPB M70-25 maxi	0,137	0,53	0,48	0,000134	0,011712	0,23	0,051	0,46	0,73	11,40 8	11,3997	75			
45	-9418	-9408	10	450	0,002	4,80	8,60	60	FBPB M70-25 maxi	0,137	0,53	0,48	0,000134	0,011846	0,23	0,051	0,46	0,74	11,63 8	11,6275	59			
46	-9408	-9398	10	460	0,005	4,80	8,60	75	Buse béton Ø 400	0,138	0,53	0,48	0,000134	0,011980	0,23	0,026	0,32	1,30	11,85 8	11,854	12			
47	-9398	-9388	10	470	0,028	6,00	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,139	0,62	0,48	0,000110	0,012090	0,13	0,014	0,12	1,97	11,98 8	11,9823	32			
48	-9388	-9378	10	480	0,028	6,00	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,140	0,62	0,48	0,000110	0,012200	0,08	0,014	0,12	1,99	12,07 8	12,0668	33			
49	-9378	-9368	10	490	0,028	6,00	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,142	0,62	0,48	0,000110	0,012310	0,08	0,014	0,12	1,91	12,15 8	12,1505	57			
50	-9368	-9358	10	500	0,028	6,00	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,143	0,62	0,49	0,000110	0,012420	0,09	0,014	0,12	1,93	12,24 8	12,2377	78			
51	-9358	-9348	10	510	0,028	6,00	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,144	0,62	0,49	0,000110	0,012530	0,09	0,014	0,12	1,94	12,32 8	12,3242	23			
52	-9348	-9338	10	520	0,028	6,00	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,146	0,62	0,49	0,000110	0,012640	0,09	0,014	0,12	1,96	12,41 8	12,4099	93			
53	-9338	-9328	10	530	0,028	6,00	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,147	0,62	0,49	0,000110	0,012750	0,08	0,015	0,12	1,98	12,49 8	12,4948	88			
54	-9328	-9318	10	540	0,028	6,00	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,148	0,62	0,49	0,000110	0,012860	0,08	0,015	0,12	1,97	12,58 8	12,5791	11			
55	-9318	-9308	10	550	0,028	6,00	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,149	0,62	0,49	0,000110	0,012970	0,08	0,015	0,12	1,98	12,66 8	12,6638	31			
56	-9308	-9298	10	560	0,028	6,00	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,151	0,62	0,49	0,000110	0,013080	0,08	0,015	0,12	2,00	12,75 8	12,747	78			
57	-9298	-9288	10	570	0,028	6,00	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,152	0,62	0,49	0,000110	0,013190	0,08	0,015	0,12	2,02	12,83 8	12,8310	9			
58	-9288	-9278	10	580	0,028	6,00	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,153	0,62	0,49	0,000110	0,013300	0,08	0,015	0,12	2,03	12,91 8	12,9137	11			
59	-9278	-9268	10	590	0,028	6,00	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,154	0,62	0,50	0,000110	0,013410	0,08	0,015	0,13	1,96	13,00 8	12,9956	65			
60	-9268	-9258	10	600	0,028	6,00	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,155	0,62	0,50	0,000110	0,013520	0,09	0,015	0,13	1,97	13,08 8	13,0808	37			
61	-9258	-9248	10	610	0,028	6,00	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,157	0,62	0,50	0,000110	0,013630	0,08	0,016	0,13	1,99	13,17 8	13,1654	13			
62	-9248	-9238	10	620	0,028	6,00	5,00	30	Fossé Trapézoïdal Revêtu 3/2 44-45	0,158	0,62	0,50	0,000110	0,013740	0,08	0,016	0,13	2,00	13,25 8	13,2493	33			
	0)																			

PROJET

Obs: TGO - Chemin des princes Km 9+868 au 9+660 (amont PRO) - Voie 2

TC mini =

I maxi (mm/h) 91,9

Coefficients de Montana : **Paris Montsouris**

Montana pour T = Pour Tc < 25 min :

a1 = 211 0,361

Pour 25 min<Tc<6 heures :

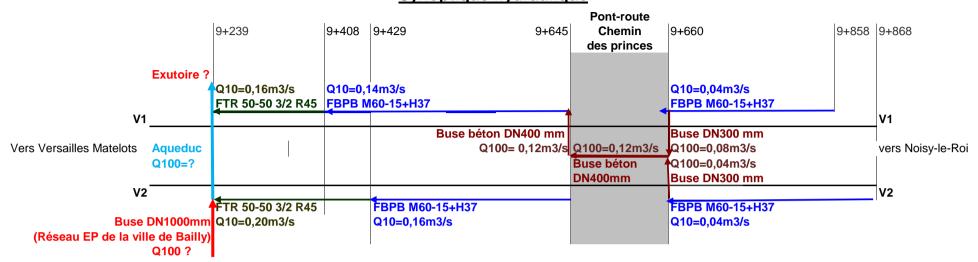
823 0,784

Pas de calcul entre 2 PT (m)

Q100/Q10 pour les BVN

Rapport Q100/Q10 BV <2 km2 Rapport Q100/Q10 BV >= 2 km2

Coefficients de ruissellement :


Plateforme : 0,85 Talus : 0,35 PK début (m):

PK fin (m): -

						0,002														0,50							
					Longueur	Pente du	Large	ur (m)				Q Rat	Co	ef C	Surfa	ace (km²)					CALCUL				В١	VN	
N	l° Tronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL	Natu	re du DL	Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	Intensité (mm/h)	Somme des TC Unit	Q pointe	s	с тс	T Retour
	1	-9858	-9848	10	10	0,002	5,41	5,00	54	FBPB M	140-15 maxi	0,002	0,61	0,61	0,000104	0,000104	0,83	0,001	0,02	0,17	10,00	92	0,83				
	2	-9848	-9838	10	20	0,002	5,41	5,63	54	FBPB N	140-15 maxi	0,009	0,60	0,36	0,000110	0,001024	0,83	0,004	0,06	0,40	10,00	92	1,67	0,0062 8	E-04 0	,3 10	10
	3	-9838	-9828	10	30	0,002	5,41	6,25	54	FBPB N	140-15 maxi	0,011	0,58	0,39	0,000117	0,001141	0,41	0,004	0,08	0,37	10,00	92	2,08				
	4	-9828	-9818	10	40	0,002	5,41	6,88	54	FBPB N	140-15 maxi	0,013	0,57	0,40	0,000123	0,001264	0,45	0,005	0,08	0,43	10,00	92	2,53				
	5	-9818	-9808	10	50	0,002	5,41	7,50	54	FBPB N	140-15 maxi	0,015	0,56	0,42	0,000129	0,001393	0,39	0,006	0,09	0,42	10,00	92	2,92				
	6	-9808	-9798	10	60	0,002	5,41	8,13	54	FBPB N	140-15 maxi	0,017	0,55	0,43	0,000135	0,001528	0,40	0,006	0,10	0,42	10,00	92	3,32				
	7	-9798	-9788	10	70	0,002	5,41	8,75	54	FBPB N	140-15 maxi	0,019	0,54	0,44	0,000142	0,001670	0,40	0,007	0,10	0,47	10,00	92	3,72				
	8	-9788	-9778	10	80	0,002	5,41	9,38	54	FBPB N	140-15 maxi	0,021	0,53	0,45	0,000148	0,001818	0,36	0,008	0,11	0,47	10,00	92	4,07				
	9	-9778	-9768	10	90	0,002	5,41	10,00	54	FBPB N	140-15 maxi	0,023	0,53	0,45	0,000154	0,001972	0,36	0,008	0,12	0,46	10,00	92	4,43				
	10	-9768	-9758	10	100	0,002	5,41	9,80	54	FBPB N	140-15 maxi	0,025	0,53	0,46	0,000152	0,002124	0,36	0,009	0,12	0,50	10,00	92	4,79				
	11	-9758	-9748	10	110	0,002	5,41	9,60	54	FBPB N	140-15 maxi	0,027	0,53	0,46	0,000150	0,002274	0,33	0,010	0,14	0,50	10,00	92	5,12				
	12	-9748	-9738	10	120	0,002	5,41	9,40	54	FBPB N	140-15 maxi	0,029	0,53	0,47	0,000148	0,002422	0,33	0,011	0,15	0,49	10,00	92	5,46				
	13	-9738	-9728	10	130	0,008	5,41	9,20	54	FBPB N	140-15 maxi	0,031	0,54	0,47	0,000146	0,002568	0,34	0,006	0,09	0,88	10,00	92	5,79				
	14	-9728	-9718	10	140	0,008	5,41	9,00	54	FBPB N	140-15 maxi	0,033	0,54	0,47	0,000144	0,002712	0,19	0,006	0,10	0,82	10,00	92	5,98				
	15	-9718	-9708	10	150	0,008	5,41	8,80	54	FBPB N	140-15 maxi	0,035	0,54	0,48	0,000142	0,002855	0,20	0,006	0,10	0,87	10,00	92	6,19				
	16	-9708	-9698	10	160	0,008	5,41	8,60	54	FBPB N	140-15 maxi	0,037	0,54	0,48	0,000140	0,002995	0,19	0,007	0,10	0,92	10,00	92	6,38				
	17	-9698	-9688	10	170	0,008	5,41	8,60	54	FBPB N	140-15 maxi	0,039	0,54	0,48	0,000140	0,003135	0,18	0,007	0,10	0,97	10,00	92	6,56				
	18	-9688	-9678	10	180	0,008	5,41	8,60	54	FBPB N	140-15 maxi	0,041	0,54	0,49	0,000140	0,003275	0,17	0,007	0,11	0,91	10,00	92	6,73				
	19	-9678	-9668	10	190	0,008	5,41	8,60	54	FBPB N	140-15 maxi	0,043	0,54	0,49	0,000140	0,003415	0,18	0,008	0,11	0,95	10,00	92	6,91				
	20	-9668	-9658	10	200	0,004	5,41	8,60	54	FBPB N	140-15 maxi	0,045	0,54	0,49	0,000140	0,003555	0,17	0,011	0,15	0,76	10,00	92	7,09				
		0																									

Q Rat
Total
(m³/s)

<u>Chemin des princes</u> Synoptique hydraulique

PROJET

Obs: TGO - St Cyr GC Km 4+173 au 4+603 - Voie 2STIF

TC mini = 10 I maxi (mm/h) 91,9

Coefficients de Montana : Paris Montsouris

Pas de calcul entre 2 PT (m) 10

Coefficients de ruissellement : PK début (m) : 4173

Talus: 0,35 PK fin (m): 4603
1 2 3 4 5 6 7 8 9 ### 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

Q100/Q10 pour les BVN

Rapport Q100/Q10 BV <2 km2 :

Rapport Q100/Q10 BV >= 2 km2

	1				0,002			,							1			0,50			,				
				Longueur	Pente du	Large	eur (m)			Q Rat	Coe	ef C	Surfa	ice (km²)					CALCUL				BVI	N	
N° Tronçor	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL	Nature du DL	Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)			Somme des TC Unit	Q pointe	s c	тс	T Retour
1	4173	4183	10	10	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,002	0,49	0,49	0,000165	0,000165	0.83	0.000	0.02	0.21	10.00	92	0.83				
2	4183	4193	10	20	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,004	0,49	0,49	0,000165	0,000330	0.78	0.000	0.02	0.43	10.00	92	1.61				
3	4193	4203	10	30	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,006	0,49	0,49	0,000165	0,000495	0,39	0.001	0.02	0.64	10.00	92	2.00				
4	4203	4213	10	40	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,008	0,49	0,49	0,000165	0,000660	0,26	0,001	0,02	0,85	10,00	92	2,27				
5	4213	4223	10	50	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,010	0,49	0,49	0,000165	0,000825	0,20	0,001	0,02	1,06	10,00	92	2,46				
6	4223	4233	10	60	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,012	0,49	0,49	0,000165	0,000990	0,16	0,001	0,02	1,28	10,00	92	2,62				
7	4233	4243	10	70	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,014	0,49	0,49	0,000165	0,001155	0,13	0,001	0,02	1,49	10,00	92	2,75				
8	4243	4253	10	80	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,016	0,49	0,49	0,000165	0,001320	0,11	0,001	0,02	1,70	10,00	92	2,86				
9	4253	4263	10	90	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,018	0,49	0,49	0,000165	0,001485	0,10	0,002	0,02	1,92	10,00	92	2,96				
10	4263	4273	10	100	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,020	0,49	0,49	0,000165	0,001650	0,09	0,002	0,02	2,13	10,00	92	3,04				
11	4273	4283	10	110	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,023	0,49	0,49	0,000165	0,001815	0,08	0,002	0,02	2,34	10,00	92	3,12				
12	4283	4293	10	120	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,025	0,49	0,49	0,000165	0,001980	0,07	0,002	0,02	2,56	10,00	92	3,19				
13	4293	4303	10	130	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,027	0,49	0,49	0,000165	0,002145	0,07	0,002	0,06	1,13	10,00	92	3,26				
14	4303	4313	10	140	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,029	0,49	0,49	0,000165	0,002310	0,15	0,002	0,06	1,22	10,00	92	3,41				
15	4313	4323	10	150	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,031	0,49	0,49	0,000165	0,002475	0,14	0,003	0,06	1,31	10,00	92	3,54				
16	4323	4333	10	160	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,033	0,49	0,49	0,000165	0,002640	0,13	0,003	0,06	1,40	10,00	92	3,67				
17	4333	4343	10	170	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,035	0,49	0,49	0,000165	0,002805	0,12	0,003	0,06	1,48	10,00	92	3,79				
18	4343	4353	10	180	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,037	0,49	0,49	0,000165	0,002970	0,11	0,003	0,06	1,57	10,00	92	3,90				
19	4353	4363	10	190	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,039	0,49	0,49	0,000165	0,003135	0,11	0,003	0,06	1,66	10,00	92	4,01				
20	4363	4373	10	200	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,041	0,49	0,49	0,000165	0,003300	0,10	0,003	0,06	1,74	10,00	92	4,11				
21	4373	4383	10	210	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,043	0,49	0,49	0,000165	0,003465	0,10	0,004	0,06	1,83	10,00	92	4,20				
22	4383	4393	10	220	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,045	0,49	0,49	0,000165	0,003630	0,09	0,004	0,06	1,92	10,00	92	4,29				
23	4393	4403	10	230	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,047	0,49	0,49	0,000165	0,003795	0,09	0,004	0,06	2,00	10,00	92	4,38				
24	4403	4413	10	240	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,049	0,49	0,49	0,000165	0,003960	0,08	0,004	0,08	1,61	10,00	92	4,47				
25	4413	4423	10	250	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,051	0,49	0,49	0,000165	0,004125	0,10	0,004	0,08	1,68	10,00	92	4,57				
26	4423	4433	10	260	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,053	0,49	0,49	0,000165	0,004290	0,10	0,004	0,08	1,75	10,00	92	4,67				
27	4433	4443	10	270	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,055	0,49	0,49	0,000165	0,004455	0,10	0,005	0,08	1,81	10,00	92	4,76				
28	4443	4453	10	280	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,057	0,49	0,49	0,000165	0,004620	0,09	0,005	0,08	1,88	10,00	92	4,854728				
29	4453	4463	10	290	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,059	0,49	0,49	0,000165	0,004785	0,09	0,005	0,08	1,95	10,00	92	4,943336				
30	4463	4473	10	300	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,061	0,49	0,49	0,000165	0,004950	0,09	0,005	0,09	1,75	10,00	92	5,028888				
31	4473	4483	10	310	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,064	0,49	0,49	0,000165	0,005115	0,10	0,005	0,09	1,81	10,00	92	5,124149				
32	4483	4493	10	320	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,066	0,49	0,49	0,000165	0,005280	0,09	0,005	0,09	1,87	10,00	92	5,216337				
33	4493	4503	10	330	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,068	0,49	0,49	0,000165	0,005445	0,09	0,006	0,09	1,92	10,00	92	5,305644				
34	4503	4513	10	340	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,070	0,49	0,49	0,000165	0,005610	0,09	0,006	0,09	1,98	10,00	92	5,392319				
35	4513	4523	10	350	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,072	0,49	0,49	0,000165	0,005775	0,08	0,006	0,09	2,04	10,00	92	5,476446				
36	4523	4533	10	360	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,074	0,49	0,49	0,000165	0,005940	0,08	0,006	0,10	1,85	10,00	92	5,558168				

				Longueur	Pente du	Large	ur (m)	
N° Tronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL
37	4533	4543	10	370	0,040	4,50	12,00	58
38	4543	4553	10	380	0,040	4,50	12,00	58
39	4553	4563	10	390	0,040	4,50	12,00	58
40	4563	4573	10	400	0,040	4,50	12,00	58
41	4573	4583	10	410	0,040	4,50	12,00	58
42	4583	4593	10	420	0,040	4,50	12,00	58
43	4593	4603	10	430	0,040	4,50	12,00	58
	0							

		Q Rat	Coe	ef C	Surf	ace (km²)					CALCUL					BVN		
	Nature du DL	Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	Intensité (mm/h)	Somme des TC Unit	Q pointe	s	С	тс	T Retour
_																,		
	FBPB M60-15 + H37	0,076	 0,49	0,49	0,000165	0,006105	0,09	0,006	0,10	1,90	10,00	92	5,648097					
	FBPB M60-15 + H37	0,078	0,49	0,49	0,000165	0,006270	0,09	0,006	0,10	1,96	10,00	92	5,735596					
	FBPB M60-15 + H37	0,080	0,49	0,49	0,000165	0,006435	0,09	0,007	0,10	2,01	10,00	92	5,820792					
	FBPB M60-15 + H37	0,082	0,49	0,49	0,000165	0,006600	0,08	0,007	0,10	2,06	10,00	92	5,903875					
	FBPB M60-15 + H37	0,084	0,49	0,49	0,000165	0,006765	0,08	0,007	0,10	2,11	10,00	92	5,984881					
	FBPB M60-15 + H37	0,086	0,49	0,49	0,000165	0,006930	0,08	0,007	0,11	1,93	10,00	92	6,063911					
	FBPB M60-15 + H37	0,088	 0,49	0,49	0,000165	0,007095	0,09	0,007	0,11	1,98	10,00	92	6,150048					

0,50

2/2

PROJET

Obs: TGO - St Cyr GC Km 4+173 au 4+673 - Voie 1STIF

TC mini = 10 I maxi (mm/h) 91,9

Coefficients de Montana : Paris Montsouris

PK début (m):

4 173

Pas de calcul entre 2 PT (m) 10

Coefficients de ruissellement :

Rapport Q100/Q10 BV <2 km2 :
Rapport Q100/Q10 BV >= 2 km2 :

Q100/Q10 pour les BVN

Plateforme: 0,85

Talus: 0,35

PK fin (m): 4673

1 2 3 4 5 6 7 8 9 # # 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

					0,002													0,50					
				Longueur	Pente du	Large	eur (m)			Q Rat	Coe	ef C	Surfa	ice (km²)					CALCUL			BV	1
N° Tronç	on PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée	tronçon	District	Talus	Code du DL	Nature du DL	Total	Dandini	014	T	cumulée	TC tronçon	SR23	11-())/ (/-)	TC Calc Inte	nsité Somme		s c	TO T
			3. ()	(m)	(m/m)	Plateforme	raius			(m³/s)	Pondéré	Cumulé	Tronçon	cumulee	(min)	cible	He(m)	V (m/s)	(min) (m	m/h) des TC	pointe	s c	TC Retour
	1	I							 										, ,				
1	4173	4183	10	10	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,002	0,49	0,49	0,000165	0,000165	0,83	0,000	0,02	0,21	,	92 0,83		0.050	
2	4183	4193	10	20	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,275	0,49	0,20	0,000165	0,053380	0,78	0,023	0,25	2,72		92 1,61	0,2708	0,053 0,	9 10
3	4193	4203	10	30	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,277	0,49	0,20	0,000165	0,053545	0,06	0,023	0,25	2,74		92 1,68			
4	4203	4213	10	40	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,279	0,49	0,20	0,000165	0,053710	0,06	0,023	0,25	2,76		92 1,74			
5	4213	4223	10	50	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,281	0,49	0,20	0,000165	0,053875	0,06	0,023	0,25	2,78		92 1,80			
6	4223	4233	10	60	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,283	0,49	0,21	0,000165	0,054040	0,06	0,024	0,25	2,80		92 1,86			
7	4233	4243	10	70	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,285	0,49	0,21	0,000165	0,054205	0,06	0,024	0,25	2,82		92 1,92			
8	4243	4253	10	80	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,287	0,49	0,21	0,000165	0,054370	0,06	0,024	0,25	2,84	10,00	92 1,98			
9	4253	4263	10	90	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,289	0,49	0,21	0,000165	0,054535	0,06	0,024	0,25	2,86	10,00	92 2,03			
10	4263	4273	10	100	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,291	0,49	0,21	0,000165	0,054700	0,06	0,024	0,25	2,88	10,00	92 2,09			
11	4273	4283	10	110	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,293	0,49	0,21	0,000165	0,054865	0,06	0,024	0,26	2,77	10,00	92 2,15			<u></u>
12	4283	4293	10	120	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,295	0,49	0,21	0,000165	0,055030	0,06	0,025	0,26	2,79	10,00	92 2,21			<u></u>
13	4293	4303	10	130	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,297	0,49	0,21	0,000165	0,055195	0,06	0,025	0,26	2,81	10,00	92 2,27			
14	4303	4313	10	140	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,300	0,49	0,21	0,000165	0,055360	0,06	0,025	0,26	2,83	10,00	92 2,33			
15	4313	4323	10	150	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,302	0,49	0,21	0,000165	0,055525	0,06	0,025	0,26	2,84	10,00	92 2,39			
16	4323	4333	10	160	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,304	0,49	0,21	0,000165	0,055690	0,06	0,025	0,26	2,86	10,00	92 2,45			
17	4333	4343	10	170	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,306	0,49	0,21	0,000165	0,055855	0,06	0,025	0,26	2,88	10,00	92 2,51			
18	4343	4353	10	180	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,308	0,49	0,22	0,000165	0,056020	0,06	0,026	0,26	2,90	10,00	92 2,56			
19	4353	4363	10	190	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,310	0,49	0,22	0,000165	0,056185	0,06	0,026	0,26	2,92	10,00	92 2,62			
20	4363	4373	10	200	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,312	0,49	0,22	0,000165	0,056350	0,06	0,026	0,28	2,81	10,00	92 2,68			
21	4373	4383	10	210	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,314	0,49	0,22	0,000165	0,056515	0,06	0,026	0,28	2,83	10,00	92 2,74			
22	4383	4393	10	220	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,316	0,49	0,22	0,000165	0,056680	0,06	0,026	0,28	2,85	10,00	92 2,80			
23	4393	4403	10	230	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,318	0,49	0,22	0,000165	0,056845	0,06	0,026	0,28	2,87	10,00	92 2,85			
24	4403	4413	10	240	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,320	0,49	0,22	0,000165	0,057010	0,06	0,027	0,28	2,89	10,00	92 2,91			
25	4413	4423	10	250	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,322	0,49	0,22	0,000165	0,057175	0,06	0,027	0,28	2,90	10,00	92 2,97			
26	4423	4433	10	260	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,324	0,49	0,22	0,000165	0,057340	0,06	0,027	0,28	2,92	10,00	3, 03			
27	4433	4443	10	270	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,326	0,49	0,22	0,000165	0,057505	0,06	0,027	0,28	2,94	10,00	3,09			
28	4443	4453	10	280	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,328	0,49	0,22	0,000165	0,057670	0,06	0,027	0,29	2,84	10,00	3,14179	1		
29	4453	4463	10	290	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,330	0,49	0,22	0,000165	0,057835	0,06	0,028	0,29	2,86	10,00	3,20047	'8		
30	4463	4473	10	300	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,332	0,49	0,22	0,000165	0,058000	0,06	0,028	0,29	2,88	10,00	3,25880)1		
31	4473	4483	10	310	0,040	4,50	12,00	58	FBPB M60-15 + H37	0,334	0,49	0,23	0,000165	0,058165	0,06	0,028	0,29	2,89	10,00	3,31676			
32	4483	4493	10	320	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,336	0,49	0,23	0,000165	0,058330	0,06	0,028	0,29	2,91	10,00	3,37437	'3		
33	4493	4503	10	330	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,338	0,49	0,23	0,000165	0,058495	0,06	0,028	0,29	2,93	10,00	3,43163	11		
34	4503	4513	10	340	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,340	0,49	0,23	0,000165	0,058660	0,06	0,028	0,29	2,94		3,48859			
35	4513	4523	10	350	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,343	0,49	0,23	0,000165	0,058825	0.06	0.029	0.29	2.96	10.00	3,54520			
36	4523	4533	10	360	0,040	4,50	12,00	58	 FBPB M60-15 + H37	0,345	0,49	0,23	0,000165	0,058990	0.06	0.029	0,29	2.98		92 3,60148			
•		1	•		k				 				·····					*************					

					0,002				_											0,50				
				Longueur	Pente du	Large	ur (m)				Q Rat		Coef	С	Surfa	ice (km²)					CALCUL			BVN
N° Tron	on PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL		Nature du DL	Total (m³/s)	Po	ndéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	Intensité (mm/h)	Somme des TC Unit Q poin	te S C TC T Retour
37	4533	4543	10	370	0,040	4,50	12,00	58	Ī	FBPB M60-15 + H37	0.347		0,49	0,23	0,000165	0,059155	0,06	0,029	0,30	2.88	10,00	92	3,657433	
38	4543	4553	10	380	0,040	4,50	12,00	58		FBPB M60-15 + H37	0,349		0,49	0,23	0,000165	0,059320	0,06	0.029	0,30	2 90	10,00	92	3,715309	
39	4553	4563	10	390	0,040	4,50	12,00	58		FBPB M60-15 + H37	0,351		0,49	0,23	0,000165	0,059485	0,06	0,029	0,30	2.91	10,00	92	3,772845	
40	4563	4573	10	400	0,040	4,50	12,00	58		FBPB M60-15 + H37	0,353	(0,49	0,23	0,000165	0,059650	0.06	0.029	0.30	2.93	10.00	92	3,830046	
41	4573	4583	10	410	0,040	4,50	12,00	58		FBPB M60-15 + H37	0,355		0,49	0,23	0,000165	0,059815	0.06	0.030	0.30	2.95	10.00	92	3,886914	
42	4583	4593	10	420	0,040	4,50	12,00	58	***************************************	FBPB M60-15 + H37	0,357		0,49	0,23	0,000165	0,059980	0,06	0,030	0,30	2,96	10,00	92	3,943503	
43	4593	4603	10	430	0,040	4,50	12,00	58		FBPB M60-15 + H37	0,359	(0,49	0,23	0,000165	0,060145	0,06	0,030	0,30	2,98	10,00	92	3,999767	
44	4603	4613	10	440	0,040	4,50	12,00	58		FBPB M60-15 + H37	0,361	(0,49	0,23	0,000165	0,060310	0,06	0,030	0,30	3,00	10,00	92	4,05571	
45	4613	4623	10	450	0,040	4,50	12,00	58	************	FBPB M60-15 + H37	0,363	(0,49	0,24	0,000165	0,060475	0,06	0,030	0,30	3,01	10,00	92	4,111336	
46	4623	4633	10	460	0,040	4,50	12,00	58		FBPB M60-15 + H37	0,365	(0,49	0,24	0,000165	0,060640	0,06	0,030	0,31	2,92	10,00	92	4,166647	
47	4633	4643	10	470	0,040	4,50	12,00	58		FBPB M60-15 + H37	0,367	(0,49	0,24	0,000165	0,060805	0,06	0,031	0,31	2,93	10,00	92	4,223799	
48	4643	4653	10	480	0,040	4,50	12,00	58		FBPB M60-15 + H37	0,369	(0,49	0,24	0,000165	0,060970	0,06	0,031	0,31	2,95	10,00	92	4,280631	
49	4653	4663	10	490	0,040	4,50	12,00	58		FBPB M60-15 + H37	0,371	(0,49	0,24	0,000165	0,061135	0,06	0,031	0,31	2,97	10,00	92	4,337148	
50	4663	4673	10	500	0,040	4,50	12,00	58		FBPB M60-15 + H37	0,373	(0,49	0,24	0,000165	0,061300	0,06	0,031	0,31	2,98	10,00	92	4,393353	
	0]															

PROJET

Obs: TGO - St Cyr GC Km 4+250 au 4+603 - Voie 1

TC mini = I maxi (mm/h) 110,5

Coefficients de Montana : **Paris Montsouris**

Montana pour T = Pour Tc < 25 min : a1 = 211 0,361

Pour 25 min<Tc<6 heures : 823 0,784

Pas de calcul entre 2 PT (m) 10 Q100/Q10 pour les BVN

Rapport Q100/Q10 BV <2 km2 Rapport Q100/Q10 BV >= 2 km2

Coefficients de ruissellement :

Plateforme : 0,85 Talus : 0,35 PK début (m):

4 250

PK fin (m): 4 603

					0,002				_										0,50		_				
				Longueur	Pente du	Large	eur (m)				Q Rat		Coef C	Su	face (km²)					CALCUL			BVI	ı	
N° Tronço	n PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée	tronçon	Plateforme	Talus	Code du DL		Nature du DL	Total	Bondá	ré Cum	ılá Transan	cumulée	TC tronçon	SR23	Ha/m\	V (m/s)	TC Calc Intens	ité Somme		s c	тс	Т
			3. ()	(m)	(m/m)	Plateforme	raius				(m³/s)	Ponde	re Cumi	ılé Tronçon	cumulee	(min)	cible	He(M)	V (m/s)	(min) (mm/	h) des 10 Unit	pointe	3 0	10	Retour
	4250	4260	10	10	0.010	4.80	40.00	57		FBPB M60-15 + H58	0.003	0,49	0,4	0,000168	0,000168								•		
'	4260	4270	10	20	0.010	4,80	12,00 12,00	57		FBPB M60-15 + H58	0.296	0,48	0,4:		0,055336	0,83	0,000	0,02		6,00 111			0.055 0.0		10
2				30				57			0.686					0,57	0,049	0,50	1,60	9,00 111		-,	0,055 0,2		
3	4270	4280	10		0,010	4,80	12,00	57 57		FBPB M60-15 + H58		0,49	0,2		0,116804	0,10	0,114	0,99		9,10 95		0,4516	0,061 0,2	4 4	10
4	4280	4290	10	40	0,010	4,80	12,00			FBPB M60-15 + H58	0,686	0,49			0,116972	0,09	0,114	0,99	1,80	9,20 95					
5	4290	4300	10	50	0,010	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2		0,117140	0,09	0,114	0,99	1,80	9,29 94					
6	4300	4310	10	60	0,010	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2		0,117308	0,09	0,114	0,99	- <mark></mark>	9,38 94					
,	4310	4320	10	70	0,010	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2		0,117476	0,09	0,114	0,99	1,79	9,47 94					
8	4320	4330	10	80	0,010	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2		0,117644	0,09	0,114	0,99		9,57 93					
9	4330	4340	10	90	0,010	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2		0,117812	0,09	0,114	0,99	1,79	9,66 93					
10	4340	4350	10	100	0,010	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2		0,117980	0,09	0,114	0,99	1,79	9,75 93	9,75				
11	4350	4360	10	110	0,010	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2		0,118148	0,09	0,114	0,99	1,79	9,85 92	9,85				
12	4360	4370	10	120	0,010	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2	0,000168	0,118316	0,09	0,114	0,99	1,79	9,94 92	9,94				
13	4370	4380	10	130	0,010	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2	0,000168	0,118484	0,09	0,114	0,99	1,79	10,03 92	10,03				
14	4380	4390	10	140	0,010	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2	0,000168	0,118652	0,09	0,114	0,99	1,79	10,13 91	10,13				
15	4390	4400	10	150	0,010	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2	0,000168	0,118820	0,09	0,114	0,99	1,79	10,22 91	10,22				
16	4400	4410	10	160	0,010	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2	0,000168	0,118988	0,09	0,114	0,99	1,79	10,31 91	10,31				
17	4410	4420	10	170	0,010	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2	0,000168	0,119156	0,09	0,114	0,99	1,79	10,40 91	10,40				
18	4420	4430	10	180	0,010	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2	0,000168	0,119324	0,09	0,114	0,99	1,79	10,50 90	10,50				
19	4430	4440	10	190	0,010	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2	0,000168	0,119492	0,09	0,114	0,99	1,79	10,59 90	10,59				
20	4440	4450	10	200	0,010	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2	0,000168	0,119660	0,09	0,114	0,99	1,79	10,68 90	10,68				
21	4450	4460	10	210	0,010	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2	0,000168	0,119828	0,09	0,114	0,99	1,79	10,78 89	10,78				
22	4460	4470	10	220	0,020	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2	0,000168	0,119996	0,09	0,080	0,74	2,43	10,87 89	10,87				
23	4470	4480	10	230	0,020	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2	0,000168	0,120164	0,07	0,080	0,74	2,43	10,94 89	10,94				
24	4480	4490	10	240	0,020	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2	0,000168	0,120332	0,07	0,080	0,74	2,43	11,01 89	11.01				
25	4490	4500	10	250	0,020	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2	0,000168	0,120500	0,07	0,081	0.74	2.43	11,08 89	11.08				
26	4500	4510	10	260	0,020	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2	0,000168	0,120668	0,07	0,081	0,74							
27	4510	4520	10	270	0,020	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2	0,000168	0,120836	0,07	0,081	0,74	- <mark></mark>	•					
28	4520	4530	10	280	0,020	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2	0,000168	0,121004	0,07	0,081	0.74	-			7			
29	4530	4540	10	290	0,020	4,80	12,00	57		FBPB M60-15 + H58	0,686	0,49	0,2	0,000168	0,121172	0,07	0,081	0,74	- <mark></mark>	11,35 88					
30	4540	4550	10	300	0,020	4,80	12,00	57		FBPB M60-15 + H58	0.686	0.49	0,2	0.000168	0,121340	0.07	0.081	0.74	-	11.42 88					
31	4550	4560	10	310	0,020	4,80	12,00	57		FBPB M60-15 + H58	0.687	0,49	0,2		0,121508	0.07	0.081	0.74		11,49 87					
32	4560	4570	10	320	0,020	4,80	12,00	57		FBPB M60-15 + H58	0.687	0,49			0,121676	0.07	0.081	0,74	- <mark></mark>	11,49 87					
33	4570	4580	10	330	0,020	4,80	12,00	57	····	FBPB M60-15 + H58	0.688	0,49	0,2		0,121844	0,07		0,76	- <mark></mark>						
34	4580	4590	10	340	0,020	4,80	12,00	57		FBPB M60-15 + H58	0.688	0,49	0,2		0,122012	0,07	0,081		- <mark></mark>	•					
35	4590	4600	10	350	0,020	4,80	12,00	57		FBPB M60-15 + H58	0,689	0,49	0,2		0,122180			0,76	-	11,69 87					
36	4600	4610	10	360	0,020	4,80	12,00	57		FBPB M60-15 + H58	0,689	0,49			0,122348	0,07	0,081	0,76		11,76 87					
1 30	7000	4010	10	300	0,020	4,00	12,00	- 51		. 51 5 1000 15 1 1100	0,000	0,48	0,2	0,000100	0,1220-10	0,07	0,081	0,76	2,41	11,83 86	11,8313	0			

					0,002]													0,50		_		
				Longueur	Pente du	Large	eur (m)				Q Rat	Coe	ef C	Surfa	ace (km²)					CALCUL		B\	/N
N° Tronçon	PK début (m)	PK fin (m)	tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL		Nature du DL	Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min) Intensi (mm/h	Somme des TC Unit	Q S (C TC T Retour
	0								l			 											

PROJET

Obs: TGO - St Cyr GC Km 4+250 au 4+890 - Voie 2

TC mini = 6 I maxi (mm/h) 110,5

Coefficients de Montana : Paris Montsouris

Montana pour T = 10 ans

Pour Tc < 25 min : a1 = 211
b1 = 0,361

Pour 25 min<Tc<6 heures : a2 = 823 b2 = 0,784

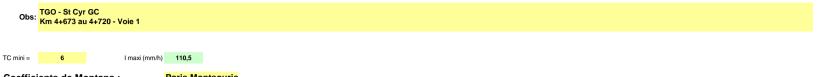
Pas de calcul entre 2 PT (m) 10

Rapport Q100/Q10 BV <2 km2 :

Rapport Q100/Q10 BV >= 2 km2 :

Q100/Q10 pour les BVN

Coefficients de ruissellement : PK début (m) : 4 250


Plateforme : 0,85
Talus : 0,35
PK fin (m) : 4 890

1 2 3 4 5 6 7 8 9 # # # 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 0,002

					0,002			1	1									0,50		_	_			
				Longueur	Pente du	Large	eur (m)			Q Rat	Coe	ef C	Surfa	ice (km²)					CALCUL			B۱	VN	
N° Tronço	n PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée	tronçon	District	Talua	Code du DL	Nature du DL	Total	D	C15	T		TC tronçon	SR23	11-()	V ((-)	TC Calc Intens	Somme	Q		с тс	т
			, , ,	(m)	(m/m)	Plateforme	Talus			(m³/s)	Pondéré	Cumulé	Tronçon	cumulée	(min)	cible	He(m)	V (m/s)	cumulé (min) (mm	h) des TC Unit	pointe	3 1	5 10	Retour
	1	1																	, ,					
1	4250	4260	10	10	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,003	0,49	0,49	0,000168	0,000168	0,83	0,000	0,02	0,26	6,00 11	0,83				
2	4260	4270	10	20	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,005	0,49	0,49	0,000168	0,000336	0,63	0,001	0,02	0,53	6,00 11	1,46				
3	4270	4280	10	30	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,008	0,49	0,49	0,000168	0,000504	0,32	0,001	0,02	0,79	6,00 11	1,78				
4	4280	4290	10	40	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,010	0,49	0,49	0,000168	0,000672	0,21	0,002	0,02	1,06	6,00 11	1,99				
5	4290	4300	10	50	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,013	0,49	0,49	0,000168	0,000840	0,16	0,002	0,02	1,32	6,00 11	2,15				
6	4300	4310	10	60	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,015	0,49	0,49	0,000168	0,001008	0,13	0,003	0,06	0,65	6,00 11	2,27				
7	4310	4320	10	70	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,018	0,49	0,49	0,000168	0,001176	0,26	0,003	0,06	0,76	6,00 11	2,53				
8	4320	4330	10	80	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,020	0,49	0,49	0,000168	0,001344	0,22	0,003	0,06	0,86	6,00 11	2,75				
9	4330	4340	10	90	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,023	0,49	0,49	0,000168	0,001512	0,19	0,004	0,06	0,97	6,00 11	2,94				
10	4340	4350	10	100	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,025	0,49	0,49	0,000168	0,001680	0,17	0,004	0,08	0,83	6,00 11	3,11				
11	4350	4360	10	110	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,028	0,49	0,49	0,000168	0,001848	0,20	0,005	0,08	0,92	6,00 11	3,31				
12	4360	4370	10	120	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,030	0,49	0,49	0,000168	0,002016	0,18	0,005	0,09	0,87	6,00 11	3,49				
13	4370	4380	10	130	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,033	0,49	0,49	0,000168	0,002184	0,19	0,006	0,09	0,94	6,00 11	3,69				
14	4380	4390	10	140	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,036	0,49	0,49	0,000168	0,002352	0,18	0,006	0,09	1,01	6,00 11	3,86				
15	4390	4400	10	150	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,038	0,49	0,49	0,000168	0,002520	0,16	0,006	0,10	0,96	6,00 11	4,03				
16	4400	4410	10	160	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,041	0,49	0,49	0,000168	0,002688	0,17	0,007	0,10	1,02	6,00 11	4,20				
17	4410	4420	10	170	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,043	0,49	0,49	0,000168	0,002856	0,16	0,007	0,11	0,97	6,00 11	4,37				
18	4420	4430	10	180	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,046	0,49	0,49	0,000168	0,003024	0,17	0,008	0,11	1,03	6,00 11	4,54				
19	4430	4440	10	190	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,048	0,49	0,49	0,000168	0,003192	0,16	0,008	0,11	1,09	6,00 11	4,70				
20	4440	4450	10	200	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,051	0,49	0,49	0,000168	0,003360	0,15	0,008	0,12	1,03	6,00 11	4,85				
21	4450	4460	10	210	0,010	4,80	12,00	58	FBPB M60-15 + H37	0,053	0,49	0,49	0,000168	0,003528	0,16	0,009	0,12	1,09	6,00 11	5,01				
22	4460	4470	10	220	0,020	4,80	12,00	58	FBPB M60-15 + H37	0,056	0,49	0,49	0,000168	0,003696	0,15	0,007	0,10	1,40	6,00 11	5,17				······
23	4470	4480	10	230	0,020	4,80	12,00	58	FBPB M60-15 + H37	0,058	0,49	0,49	0,000168	0,003864	0,12	0,007	0,10	1,47	6,00 11	5,29				
24	4480	4490	10	240	0,020	4,80	12,00	58	FBPB M60-15 + H37	0,061	0,49	0,49	0,000168	0,004032	0,11	0,007	0,11	1,37	6,00 11	5,40				
25	4490	4500	10	250	0,020	4,80	12,00	58	FBPB M60-15 + H37	0,064	0,49	0,49	0,000168	0,004200	0,12	0,007	0,11	1,43	6,00 11	5,52				
26	4500	4510	10	260	0,020	4,80	12,00	58	FBPB M60-15 + H37	0,066	0,49	0,49	0,000168	0,004368	0,12	0,008	0,11	1,48	6,00 11					
27	4510	4520	10	270	0,020	4,80	12,00	58	FBPB M60-15 + H37	0,069	0,49	0,49	0,000168	0,004536	0,11	0,008	0,11	1,54	6,00 11	5,75				,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
28	4520	4530	10	280	0,020	4,80	12,00	58	FBPB M60-15 + H37	0,071	0,49	0,49	0,000168	0,004704	0,11	0,008	0,12	1,45	6,00 11	5,85820	7			······
29	4530	4540	10	290	0,020	4,80	12,00	58	FBPB M60-15 + H37	0,074	0,49	0,49	0,000168	0,004872	0.12	0.009	0,12	1.50	6.00 11					
30	4540	4550	10	300	0,020	4,80	12,00	58	FBPB M60-15 + H37	0,076	0,49	0,49	0,000168	0,005040	0,11	0,009	0,12	1.54	6,08 11					
31	4550	4560	10	310	0,020	4,80	12,00	58	FBPB M60-15 + H37	0,078	0,49	0,49	0,000168	0,005208	0,11	0,009	0,12	1,58	6,19 10					
32	4560	4570	10	320	0,020	4,80	12,00	58	FBPB M60-15 + H37	0,080	0,49	0,49	0,000168	0,005376	0.11	0.009	0,12	1.62	6,30 10					
33	4570	4580	10	330	0,020	4,80	12,00	58	FBPB M60-15 + H37	0,082	0,49	0,49	0,000168	0,005544	0.10	0.010	0.14	1.52	6.40 10					
34	4580	4590	10	340	0,020	4,80	12,00	58	FBPB M60-15 + H37	0,084	0,49	0,49	0,000168	0,005712	0.11	0.010	0,14	1.56	6.51 10					
35	4590	4600	10	350	0,020	4,80	12,00	58	FBPB M60-15 + H37	0,086	0,49	0,49	0,000168	0,005880	0.11	0.010	0.14	1.59	6,62 10					
36	4600	4610	10	360	0,020	4,80	12,00	58	FBPB M60-15 + H37	0,395	0,49	0,25	0,000168	0,067048	0.10	0.047	0.43	2.27	13.00 10			0,061 0,	,23 13	10
1	1			1	L		, , , , , , , , , , , , , , , , , , , ,						,		0,10	0,077	0,70	2,21	.0,00 10	in in its and	0,0200			

					0,002															0,50							
				Longueur	Pente du	Large	ur (m)			Q Rat		Coef	С	Surfa	ce (km²)						CALCUL				BVN	1	
N° Tronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL	Nature du DL	Total (m³/s)	Pon	déré	Cumulé	Tronçon	cumulée	TC	tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	Intensité (mm/h)	Somme des TC Unit p	Q pointe	s c	TC R	T etour
37	4610	4620	10	370	0,020	4,80	12,00	59	FBPB M60-15 + H58+H37	0,476	0,	19	0,28	0,000168	0,074216		0,07	0,056	0,52	2,33	13,07	83	13,07333 0	0,1053 0	,007 0,49	9 6	10
38	4620	4630	10	380	0,020	4,80	12,00	59	FBPB M60-15 + H58+H37	0,477	0,	19	0,28	0,000168	0,074384		0,07	0,056	0,52	2,34	13,14	83	13,14475				
39	4630	4640	10	390	0,020	4,80	12,00	59	FBPB M60-15 + H58+H37	0,478	0,4	19	0,28	0,000168	0,074552		0,07	0,056	0,52	2,34	13,22	83	13,21603				
40	4640	4650	10	400	0,020	4,80	12,00	59	FBPB M60-15 + H58+H37	0,479	0,	19	0,28	0,000168	0,074720		0,07	0,056	0,52	2,35	13,29	83	13,28717				
41	4650	4660	10	410	0,020	4,80	12,00	59	FBPB M60-15 + H58+H37	0,480	0,4	19	0,28	0,000168	0,074888		0,07	0,057	0,52	2,35	13,36	83	13,35816				
42	4660	4670	10	420	0,020	4,80	12,00	59	FBPB M60-15 + H58+H37	0,480	0,	19	0,28	0,000168	0,075056		0,07	0,057	0,52	2,36	13,43	83	13,429				
43	4670	4680	10	430	0,020	4,80	12,00	59	FBPB M60-15 + H58+H37	0,481	0,	19	0,28	0,000168	0,075224		0,07	0,057	0,53	2,31	13,50	82	13,4997				
44	4680	4690	10	440	0,020	4,80	12,00	59	FBPB M60-15 + H58+H37	0,482	0,4	19	0,28	0,000168	0,075392		0,07	0,057	0,53	2,32	13,57	82	13,57183				
45	4690	4700	10	450	0,020	4,80	12,00	59	FBPB M60-15 + H58+H37	0,483	0,	19	0,28	0,000168	0,075560		0,07	0,057	0,53	2,32	13,64	82	13,64382				
46	4700	4710	10	460	0,020	4,80	12,00	59	FBPB M60-15 + H58+H37	0,484	0,4	19	0,28	0,000168	0,075728		0,07	0,057	0,53	2,32	13,72	82	13,71567				
47	4710	4720	10	470	0,020	4,80	12,00	59	FBPB M60-15 + H58+H37	0,485	0,	19	0,28	0,000168	0,075896		0,07	0,057	0,53	2,33	13,79	82	13,78737				
48	4720	4730	10	480	0,020	4,80	12,00	81	Buse béton Ø 1000	1,123	0,4	19	0,25	0,000168	0,198064		0,07	0,106	0,40	3,80	13,86	82	13,85893	0,6706	,122 0,2	3 12	10
49	4730	4740	10	490	0,002	4,80	12,00	90	Collecteur Drainant Ø 1000	1,124	0,4	19	0,25	0,000168	0,198232		0,04	0,251	0,68	1,97	13,90	82	13,90276				
50	4740	4750	10	500	0,002	12,00	6,00	90	Collecteur Drainant Ø 1000	1,124	0,0	88	0,25	0,000180	0,198412		0,08	0,251	0,68	1,97	13,99	81	13,98726				
51	4750	4760	10	510	0,002	12,00	6,00	90	Collecteur Drainant Ø 1000	1,124	0,0	88	0,25	0,000180	0,198592		0,08	0,251	0,68	1,97	14,07	81	14,07174				
52	4760	4770	10	520	0,002	12,00	6,00	90	Collecteur Drainant Ø 1000	1,125	0,0	88	0,25	0,000180	0,198772		0,08	0,251	0,68	1,97	14,16	81	14,15619				
53	4770	4780	10	530	0,002	12,00	6,00	90	Collecteur Drainant Ø 1000	1,125	0,0	88	0,25	0,000180	0,198952		0,08	0,252	0,68	1,97	14,24	81	14,24062				
54	4780	4790	10	540	0,002	12,00	6,00	90	Collecteur Drainant Ø 1000	1,125	0,0	88	0,25	0,000180	0,199132		0,08	0,252	0,68	1,97	14,33	81	14,32502				
55	4790	4800	10	550	0,002	12,00	6,00	90	Collecteur Drainant Ø 1000	1,126	0,0	88	0,25	0,000180	0,199312		0,08	0,252	0,68	1,97	14,41	81	14,40953				
56	4800	4810	10	560	0,002	12,00	6,00	90	Collecteur Drainant Ø 1000	1,126	0,0	88	0,25	0,000180	0,199492		0,08	0,252	0,68	1,97	14,49	80	14,49401				
57	4810	4820	10	570	0,002	12,00	6,00	90	Collecteur Drainant Ø 1000	1,126	0,0	88	0,25	0,000180	0,199672		0,08	0,252	0,68	1,97	14,58	80	14,57847				
58	4820	4830	10	580	0,002	12,00	6,00	90	Collecteur Drainant Ø 1000	1,127	0,0	88	0,25	0,000180	0,199852		0,08	0,252	0,68	1,97	14,66	80	14,66289				
59	4830	4840	10	590	0,002	12,00	6,00	90	Collecteur Drainant Ø 1000	1,127	0,0	88	0,25	0,000180	0,200032		0,08	0,252	0,68	1,98	14,75	80	14,74729				
60	4840	4850	10	600	0,002	12,00	6,00	90	Collecteur Drainant Ø 1000	1,128	0,0	88	0,25	0,000180	0,200212		0,08	0,252	0,68	1,97	14,83	80	14,83166				
61	4850	4860	10	610	0,002	12,00	6,00	90	Collecteur Drainant Ø 1000	1,128	0,0	88	0,25	0,000180	0,200392		0,08	0,252	0,68	1,97	14,92	80	14,91613				
62	4860	4870	10	620	0,002	12,00	6,00	90	Collecteur Drainant Ø 1000	1,128	0,0	88	0,26	0,000180	0,200572		0,08	0,252	0,68	1,97	15,00	79	15,00058				
63	4870	4880	10	630	0,002	12,00	6,00	90	Collecteur Drainant Ø 1000	1,129	0,0	88	0,26	0,000180	0,200752		0,08	0,252	0,68	1,98	15,08	79	15,08499				
64	4880	4890	10	640	0,002	12,00	6,00	90	Collecteur Drainant Ø 1000	1,129	0,0	88	0,26	0,000180	0,200932		0,08	0,253	0,68	1,98	15,17	79	15,16937				
	0																										

PROJET

13

Q100/Q10 pour les BVN

Rapport Q100/Q10 BV <2 km2 Rapport Q100/Q10 BV >= 2 km2

27 28 29 30 31

1/2

Coefficients de Montana : **Paris Montsouris** Montana pour T = Pour Tc < 25 min : a1 = 211 Pour 25 min<Tc<6 heures : 823 0,361 0,784 Pas de calcul entre 2 PT (m) 10

Longueur

(m)

20

30

40

50

0.002

Pente du

troncon

(m/m)

0,020

0,020

0,020

4,80

4,80

4,80

4,80

Coefficients de ruissellement : Plateforme : 0.85

N° Tronçon PK début (m) PK fin (m)

4673

4683

4693

4703

4713

2

3

4

5

Talus : 0,35

4683

4693

4703

4713

4723

10

10

10

10

PK début (m):

Talus

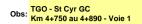
12,00

12,00 12,00

12,00

PK fin (m): 4 720

4 673


7	8	9	#	#	#	
ı	Largeur (m)				ı	

Code du DL

	Q Rat	Coe	f C	Surf	ace (km²)					CALCUL					BVN		
Nature du DL	Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	Intensité (mm/h)		Q pointe	s	С	тс	T Retour
FBPB M60-15 + H37	0,003	0,49	0,49	0,000168	0,000168	0,83	0,000	0,02	0,26	6,00	111	0,83					
 FBPB M60-15 + H37	0,447	0,49	0,24	0,000168	0,060336	0,63	0,053	0,48	2,31	6,00	111	1,46	0,442	0,06	0,24	4	10
 FBPB M60-15 + H37	0,450	0,49	0,24	0,000168	0,060504	0,07	0,053	0,48	2,32	6,00	111	1,53					
 FBPB M60-15 + H37		0,49	0,24	0,000168	0,060672	0,07	0,053	0,48	2,34	6,00	111	1,61					
 FBPB M60-15 + H37	0,455	0,49	0,24	0,000168	0,060840	0,07	0,054	0,48	2,35	6,00	111	1,68					

Q Rat
Total
(m³/s)

PROJET

I maxi (mm/h) 91,9 TC mini =

Coefficients de Montana : **Paris Montsouris**

Montana pour T = Pour 25 min<Tc<6 heures : Pour Tc < 25 min : a1 = 211 0,361

823 0,784

Pas de calcul entre 2 PT (m) 10

Talus : 0,35

Rapport Q100/Q10 BV <2 km2 : Rapport Q100/Q10 BV >= 2 km2

Q100/Q10 pour les BVN

Coefficients de ruissellement : PK début (m): Plateforme : 0,85

PK fin (m): 4 890

4 750

27 28 29 30 31

						0,002														0,50						
					Longueur	Pente du	Large	ur (m)				Q Rat	Coe	f C	Surfa	ce (km²)					CALCUL				BVN	1
N° Tr	onçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL		Nature du DL	Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	Intensité (mm/h)	Somme des TC Unit	Q pointe	s c	TC T Retour
ĺ	1	4750	4760	10	10	0,002	4.50	11,00	84		Collecteur Drainant Ø 400	0,002	0,50	0,50	0,000155	0,000155	0.83	0.000	0.04	0.35	10.00	92	0.83			
	2	4760	4770	10	20	0,002	4,50	11,00	84	***********	Collecteur Drainant Ø 400	0,036	 0,50	0,21	0,000155	0,006510	0,48	0.008	0.15	0,83	10,00	92		0.0317	0.006 0.	.2 6 10
	3	4770	4780	10	30	0,002	4,50	11,00	84		Collecteur Drainant Ø 400	0,038	 0,50	0,22	0,000155	0,006665	0,20	0,008	0,15	0,85	10,00	92	1.51	0,0011	0,000 0,	
	4	4780	4790	10	40	0,002	4,50	11,00	84		Collecteur Drainant Ø 400	0,039	 0,50	0,23	0,000155	0,006820	0.20	0,009	0,16	0.86	10,00	92	1.71			
	5	4790	4800	10	50	0,002	4,50	11,00	84		Collecteur Drainant Ø 400	0,041	 0,50	0,23	0,000155	0,006975	0,19	0,009	0.16	0.87	10.00	92	1.90			
	6	4800	4810	10	60	0,002	4,50	11,00	84		Collecteur Drainant Ø 400	0,043	 0,50	0,24	0,000155	0,007130	0.19	0.010	0.17	0.88	10.00	92	2.09			
	7	4810	4820	10	70	0,002	4,50	11,00	84	***************************************	Collecteur Drainant Ø 400	0,045	 0,50	0,24	0,000155	0,007285	0,19	0,010	0,17	0,89	10,00	92	2,28		••••••	
	8	4820	4830	10	80	0,002	4,50	11,00	84		Collecteur Drainant Ø 400	0,047	 0,50	0,25	0,000155	0,007440	0,19	0,011	0,17	0,90	10,00	92	2,47		•••••	
	9	4830	4840	10	90	0,002	4,50	11,00	84		Collecteur Drainant Ø 400	0,049	 0,50	0,25	0,000155	0,007595	0,18	0,011	0,18	0,91	10,00	92	2,65			
1	10	4840	4850	10	100	0,002	4,50	11,00	84		Collecteur Drainant Ø 400	0,051	 0,50	0,26	0,000155	0,007750	0,18	0,011	0,18	0,92	10,00	92	2,84		•••••	
1	11	4850	4860	10	110	0,002	4,50	11,00	84		Collecteur Drainant Ø 400	0,053	 0,50	0,26	0,000155	0,007905	0,18	0,012	0,19	0,93	10,00	92	3,02			
1	12	4860	4870	10	120	0,002	4,50	11,00	84		Collecteur Drainant Ø 400	0,055	 0,50	0,27	0,000155	0,008060	0,18	0,012	0,19	0,94	10,00	92	3,20		•••••	
1	13	4870	4880	10	130	0,002	4,50	11,00	84		Collecteur Drainant Ø 400	0,057	 0,50	0,27	0,000155	0,008215	0,18	0,013	0,19	0,95	10,00	92	3,37			
1	14	4880	4890	10	140	0,002	4,50	11,00	84		Collecteur Drainant Ø 400	0,059	 0,50	0,28	0,000155	0,008370	0,18	0,013	0,20	0,95	10,00	92	3,55		•••••	
		0																								

2007_DIM DL Outil_V4 1/2 Q rationnel

Q Rat
Total
(m³/s)

PROJET

Obs: TGO - St Germain GC Km 19+047 au 19+163 - Voie 1

TC mini =

I maxi (mm/h) 91,9

Coefficients de Montana : Montana pour T =

Pour Tc < 25 min :

Paris Montsouris

a1 = 211 0,361

Pour 25 min<Tc<6 heures :

823 0,784

Pas de calcul entre 2 PT (m)

10

Q100/Q10 pour les BVN

Rapport Q100/Q10 BV <2 km2 Rapport Q100/Q10 BV >= 2 km2

Coefficients de ruissellement :

Plateforme : 0,85 Talus : 0,35

PK début (m):

PK fin (m): -

19 047

19 163

27 28 29 30 31

					0,002			
				Longueur	Pente du	Large	ur (m)	
N° Tronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL
1	-19163	-19153	10	10	0,002	7,50	2,00	58
2	-19153	-19143	10	20	0,002	7,50	2,00	58
3	-19143	-19133	10	30	0,002	7,50	2,00	58
4	-19133	-19123	10	40	0,002	7,50	2,00	58
5	-19123	-19113	10	50	0,002	7,50	2,00	58
6	-19113	-19103	10	60	0,002	7,50	2,00	58
7	-19103	-19093	10	70	0,002	7,50	2,00	58
8	-19093	-19083	10	80	0,002	7,50	2,00	58
9	-19083	-19073	10	90	0,002	7,50	2,00	58
10	-19073	-19063	10	100	0,002	7,50	2,00	58
11	-19063	-19053	10	110	0,002	7,50	2,00	58
12	-19053	-19043	10	120	0,002	7,50	2,00	58
	0							

	Q Rat	Coe	f C	Surfa	ace (km²)					CALCUL					BVN		
Nature du DL	Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	Intensité (mm/h)	Somme des TC Unit	Q pointe	s	С	тс	T Retour
 FBPB M60-15 maxi	0,002	 0,74	0,74	0,000095	0,000095	0,83	0,001	0,02	0,19	10,00	92	0,83					
 FBPB M60-15 maxi	0,004	 0,74	0,74	0,000095	0,000190	0,83	0,001	0,02	0,38	10,00	92	1,67					
 FBPB M60-15 maxi	0,005	0,74	0,74	0,000095	0,000285	0,44	0,002	0,02	0,56	10,00	92	2,11					
 FBPB M60-15 maxi	0,007	0,74	0,74	0,000095	0,000380	0,30	0,003	0,06	0,31	10,00	92	2,41					
 FBPB M60-15 maxi	0,009	0,74	0,74	0,000095	0,000475	0,54	0,003	0,06	0,38	10,00	92	2,95					
 FBPB M60-15 maxi	0,011	0,74	0,74	0,000095	0,000570	0,43	0,004	0,08	0,36	10,00	92	3,38					
 FBPB M60-15 maxi	0,013	0,74	0,74	0,000095	0,000665	0,47	0,005	0,08	0,41	10,00	92	3,85					
 FBPB M60-15 maxi	0,014	0,74	0,74	0,000095	0,000760	0,40	0,005	0,09	0,41	10,00	92	4,25					
 FBPB M60-15 maxi	0,016	0,74	0,74	0,000095	0,000855	0,41	0,006	0,10	0,41	10,00	92	4,66					
 FBPB M60-15 maxi	0,018	0,74	0,74	0,000095	0,000950	0,41	0,007	0,10	0,45	10,00	92	5,07					
 FBPB M60-15 maxi	0,020	0,74	0,74	0,000095	0,001045	0,37	0,007	0,11	0,45	10,00	92	5,43					
 FBPB M60-15 maxi	0,022	0,74	0,74	0,000095	0,001140	0,37	0,008	0,11	0,49	10,00	92	5,81					

Q Rat
Total
(m³/s)

PROJET

Obs: TGO - St Germain GC Km 19+047 au 19+163 - Voie 2

TC mini = I maxi (mm/h) 91,9

Paris Montsouris Coefficients de Montana :

Montana pour T = 10 ans Pour Tc < 25 min : a1 = 211 Pour 25 min<Tc<6 heures : 0,361

823 0,784

Pas de calcul entre 2 PT (m) 10 Q100/Q10 pour les BVN

Rapport Q100/Q10 BV <2 km2 Rapport Q100/Q10 BV >= 2 km2

Coefficients de ruissellement :

Plateforme : 0.85 Talus : 0,35 PK début (m):

PK fin (m):

19 047

19 163

.....

.....

26 27 28 29 30 31

Largeur (m) Longueur Pente du N° Tronçon PK début (m) PK fin (m) Code du DL troncon Talus (m) (m/m) -19163 -19153 10 2,00 0,002 7,50 2 -19153 -19143 10 20 0,002 -19143 -19133 7,50 7,50 2,00 3 10 30 4 -19133 -19123 40 2,00 10 7,50 7,50 5 -19123 -19113 10 50 0,002 2,00 2,00 0,002 6 -19113 -19103 10 60 7 -19103 -19093 10 70 0,002 7,50 2,00 58 8 -19093 -19083 10 80 7,50 2,00 0,002 58 9 -19083 -19073 10 90 0,002 2,00 10 -19073 -19063 10 100 0,002 2,00 0,002 11 -19063 -19053 10 110 0,002 12 -19053 -19043 10 120 7,50 2,00 58

	Q Rat	Coe	ef C	Surfa	ace (km²)					CALCUL					BVN		
Nature du DL	Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	Intensité (mm/h)	Somme des TC Unit	Q pointe	s	СТ	Reto	ur
FBPB M60-15 maxi	0,002	0,74	0,74	0,000095	0,000095	0,02	0,19	10,00	92	0.83							
FBPB M60-15 maxi	0,004	 0,74	,74 0,74 0,00095 0,000190 0,83 0,001 0,0						0,38	10,00	92	1,67					
FBPB M60-15 maxi	0,005	0,74	0,74	0,000095	0,000285	0,44	0,002	0,02	0,56	10,00	92	2,11					
FBPB M60-15 maxi	0,007	 0,74	0,74	0,000095	0,000380	0,30	0,003	0,06	0,31	10,00	92	2,41					
FBPB M60-15 maxi	0,009	0,74	0,74	0,000095	0,000475	0,54	0,003	0,06	0,38	10,00	92	2,95					
FBPB M60-15 maxi	0,011	0,74	0,74	0,000095	0,000570	0,43	0,004	0,08	0,36	10,00	92	3,38					
FBPB M60-15 maxi	0,013	0,74	0,74	0,000095	0,000665	0,47	0,005	0,08	0,41	10,00	92	3,85					
FBPB M60-15 maxi	0,014	0,74	0,74	0,000095	0,000760	0,40	0,005	0,09	0,41	10,00	92	4,25					
FBPB M60-15 maxi	0,016	0,74	0,74	0,000095	0,000855	0,41	0,006	0,10	0,41	10,00	92	4,66					
FBPB M60-15 maxi	0,018	 0,74	0,74	0,000095	0,000950	0,41	0,007	0,10	0,45	10,00	92	5,07					
FBPB M60-15 maxi	0,020	0,74	0,74	0,000095	0,001045	0,37	0,007	0,11	0,45	10,00	92	5,43					
FBPB M60-15 maxi	0,022	 0,74	0,74	0,000095	0,001140	0,37	0,008	0,11	0,49	10,00	92	5,81					

Q Rat
Total
(m³/s)

PROJET

Obs: TGO - St Germain GC Km 19+163 au 19+516 - Voie 1

I maxi (mm/h) 91,9 TC mini =

Coefficients de Montana : **Paris Montsouris**

Montana pour T = Pour Tc < 25 min : a1 = 211 0,361

Pour 25 min<Tc<6 heures :

823 0,784

Pas de calcul entre 2 PT (m) 10

Q100/Q10 pour les BVN

Rapport Q100/Q10 BV <2 km2 : Rapport Q100/Q10 BV >= 2 km2

Coefficients de ruissellement :

Plateforme : 0,85 Talus : 0,35 PK début (m):

19 163

PK fin (m): 19 517 9

27 28 29 30 31

			K fin (m) Longueur tronçon (m)		Pente du tronçon	Larg	eur (m)					Coe	ef C	Surfa	ice (km²)				3,00	CALCUL			BVN	
N° Tronçon	PK début (m)	PK fin (m)		Longueur cumulée (m)		Plateforme	Talus	Code du DL		Nature du DL	Q Rat Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (mm/h)	Somme des TC Unit	Q pointe	s c	TC T Retour
1	19163	19173	10	10	0,002	7,50	2,00	58	_ 	FBPB M60-15 + maxi	0.002	0,74	0,74	0,000095	0,000095	0.00	0.004	0.00	0.40	40.00				
2	19173	19173	10	20	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,002	0,74	0,74	0,000095	0,000190	0,83	0,001	0,02		10,00 92	0,83 1.67			
3	19183	19193	10	30	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0.005	0.74	0,74	0.000095	0,000135	0,83	0,001	0,02		10,00 92	2.11	·····		
4	19193	19203	10	40	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0.007	0.74	0,74	0.000095	0.000380	0,44	0,002	0,02		10,00 92 10.00 92	2,11			
5	19203	19213	10	50	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0.009	0.74	0,74	0.000095	0,000475		0,003	0,06		10,00 92 10.00 92	2,41	·····		
6	19213	19223	10	60	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0.011	0,74	0,74	0,000095	0,000570	0,54 0.43	0,003	0.08	0,38	10.00 92	3.38			
7	19223	19233	10	70	0,002	7.50	2,00	58		FBPB M60-15 + maxi	0.013	0.74	0,74	0.000095	0,000665	0,43	0.005	0,08	0,36	10,00 92	3,85			
8	19233	19243	10	80	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0.014	0,74	0,74	0.000095	0.000760	0,40	0.005	0,09		10,00 92	4.25	·		
9	19243	19253	10	90	0,002	7,50	2,00	58	···	FBPB M60-15 + maxi	0.016	0.74	0.74	0,000095	0,000855	0,41	0.006	0,10		10,00 92	4.66	·····		
10	19253	19263	10	100	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0.018	0.74	0.74	0.000095	0,000950	0,41	0.007	0.10	0.45	10.00 92	5.07			
11	19263	19273	10	110	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,020	0,74	0,74	0,000095	0,001045	0,37	0.007	0,11		10.00 92	5.43	·····		
12	19273	19283	10	120	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,022	0,74	0,74	0,000095	0,001140	0,37	0,008	0,11		10,00 92	5.81			
13	19283	19293	10	130	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,023	0,74	0,74	0,000095	0,001235	0.34	0.009	0.12		10.00 92	6.15			
14	19293	19303	10	140	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,025	0,74	0,74	0,000095	0,001330	0,35	0.009	0,12	·	10.00 92	6.50			
15	19303	19313	10	150	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,027	0,74	0,74	0,000095	0,001425	0.32	0.010	0.14		10.00 92	6.82			
16	19313	19323	10	160	0,002	7,50	2,00	58	" """	FBPB M60-15 + maxi	0,029	0,74	0,74	0,000095	0,001520	0.33	0.011	0.15		10.00 92	7.15			
17	19323	19333	10	170	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,031	0,74	0,74	0,000095	0,001615	0,34	0,011	0,15	0,52	10,00 92	7,49			
18	19333	19343	10	180	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,033	0,74	0,74	0,000095	0,001710	0,32	0,012	0,16	0,51	10,00 92	7,81			
19	19343	19353	10	190	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,034	0,74	0,74	0,000095	0,001805	0,32	0,013	0,16	0,54	10,00 92	8,13			
20	19353	19363	10	200	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,036	0,74	0,74	0,000095	0,001900	0,31	0,013	0,17	0,53	10,00 92	8,44			
21	19363	19373	10	210	0,002	7,50	2,00	58	<u> </u>	FBPB M60-15 + maxi	0,038	0,74	0,74	0,000095	0,001995	0,31	0,014	0,17	0,56	10,00 92	8,75			
22	19373	19383	10	220	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,040	0,74	0,74	0,000095	0,002090	0,30	0,015	0,18	0,55	10,00 92	9,05			
23	19383	19393	10	230	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,042	0,74	0,74	0,000095	0,002185	0,30	0,015	0,18	0,57	10,00 92	9,36			
24	19393	19403	10	240	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,043	0,74	0,74	0,000095	0,002280	0,29	0,016	0,19	0,56	10,00 92	9,65			
25	19403	19413	10	250	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,045	0,74	0,74	0,000095	0,002375	0,30	0,017	0,19	0,58	10,00 92	9,95			
26	19413	19423	10	260	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,047	0,74	0,74	0,000095	0,002470	0,29	0,017	0,21	0,57	10,23 91	10,23			
27	19423	19433	10	270	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,048	0,74	0,74	0,000095	0,002565	0,29	0,018	0,21	0,58	10,53 90	10,53			
28	19433	19443	10	280	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,049	0,74	0,74	0,000095	0,002660	0,29	0,018	0,21	0,60	10,81 89	10,81388			
29	19443	19453	10	290	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,050	0,74	0,74	0,000095	0,002755	0,28	0,019	0,22	0,58	11,09 89	11,09265			
30	19453	19463	10	300	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,052	0,74	0,74	0,000095	0,002850	0,29	0,019	0,22	0,60	11,38 88	11,37974			
31	19463	19473	10	310	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,053	0,74	0,74	0,000095	0,002945	0,28	0,020	0,22	0,61	11,66 87	11,65984			
32	19473	19483	10	320	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,054	0,74	0,74	0,000095	0,003040	0,27	0,020	0,23	0,59	11,93 86	11,93353			
33	19483	19493	10	330	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,055	0,74	0,74	0,000095	0,003135	0,28	0,021	0,23	0,60	12,22 85	12,21528			
34	19493	19503	10	340	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,057	0,74	0,74	0,000095	0,003230	0,28	0,021	0,23	0,62	12,49 85	12,49081			
35	19503	19513	10	350	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,058	0,74	0,74	0,000095	0,003325	0,27	0,022	0,24	0,60	12,76 84	12,76063			
36	19513	19523	10	360	0,002	7,50	2,00	58		FBPB M60-15 + maxi	0,059	0,74	0,74	0,000095	0,003420	0,28	0,022	0,24	0,61	13,04 84	13,03826			

					0,002														0,50		_		
				Longueur	Pente du	Large	eur (m)				Q Rat	Coe	ef C	Surfa	ace (km²)					CALCUL		В	VN
N° Tronçon	PK début (m)	PK fin (m)	tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL		Nature du DL	Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (mm/l	Somme des TC Unit	Q S	C TC T Retour
	0								l			 											

PROJET

Obs: TGO - St Germain GC Km 19+163 au 19+516 - Voie 2

TC mini = 10 I maxi (mm/h) 91,9

Coefficients de Montana : Paris Montsouris

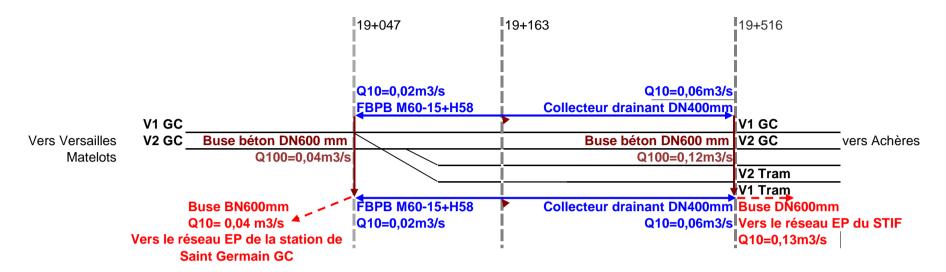
Montana pour T = 10 ans

Pas de calcul entre 2 PT (m) 10

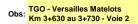
Pour Tc < 25 min :

Q100/Q10 pour les BVN
Rapport Q100/Q10 BV <2 km2 : 2

Rapport Q100/Q10 BV >= 2 km2 : 2


Coefficients de ruissellement : PK début (m) : 19163
Plateforme : 0,85

Talus: 0,35 PK fin (m): 19517
1 2 3 4 5 6 7 8 9 ### 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3


					0,002	Large	eur (m)		l			Coe	ef C	Surfa	ce (km²)				0,00	CALCUL				BV	N	\neg
N° Tronçor	PK début (m)	PK fin (m)	Longueur tronçon (m)	Longueur cumulée (m)	Pente du tronçon (m/m)	Plateforme	Talus	Code du DL		Nature du DL	Q Rat Total (m³/s)	Pondéré		Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc	Intensité (mm/h)	Somme des TC Unit	Q pointe	s c	TC	T Retour
1	19163	19173	10	10	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,002	0,74	0,74	0,000095	0,000095	0.83	0.000	0,04	0,34	10,00	92	0.83				
2	19173	19183	10	20	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,004	0,74	0,74	0,000095	0,000190	0,50	0.001	0,05		10,00	92	1.33				
3	19183	19193	10	30	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,005	0,74	0,74	0,000095	0,000285	0.39	0.001	0.06		10.00	92	1.72				
4	19193	19203	10	40	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,007	0,74	0,74	0,000095	0,000380	0.35	0.002	0.07		10.00	92	2.07				
5	19203	19213	10	50	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,009	0,74	0,74	0,000095	0,000475	0.32	0.002	0.07	0.56	10.00	92	2.39		•••••		
6	19213	19223	10	60	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,011	0,74	0,74	0,000095	0,000570	0,30	0,002	0,08	0,59	10,00	92	2,68				
7	19223	19233	10	70	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,013	0,74	0,74	0,000095	0,000665	0,28	0,003	0,09	0,62	10,00	92	2,96		••••••		
8	19233	19243	10	80	0,002	7,50	2,00	84	**********	Collecteur Drainant Ø 400	0,014	0,74	0,74	0,000095	0,000760	0,27	0,003	0,09	0,64	10,00	92	3,24		•••••		
9	19243	19253	10	90	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,016	0,74	0,74	0,000095	0,000855	0,26	0,004	0,10	0,67	10,00	92	3,49				
10	19253	19263	10	100	0,002	7,50	2,00	84	**********	Collecteur Drainant Ø 400	0,018	0,74	0,74	0,000095	0,000950	0,25	0,004	0,11	0,69	10,00	92	3,74		•••••		
11	19263	19273	10	110	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,020	0,74	0,74	0,000095	0,001045	0,24	0,004	0,11	0,71	10,00	92	3,99				
12	19273	19283	10	120	0,002	7,50	2,00	84	**********	Collecteur Drainant Ø 400	0,022	0,74	0,74	0,000095	0,001140	0,24	0,005	0,12	0,73	10,00	92	4,22		•••••		
13	19283	19293	10	130	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,023	0,74	0,74	0,000095	0,001235	0,23	0,005	0,12	0,74	10,00	92	4,45				
14	19293	19303	10	140	0,002	7,50	2,00	84	**********	Collecteur Drainant Ø 400	0,025	0,74	0,74	0,000095	0,001330	0,23	0,006	0,13	0,75	10,00	92	4,68		•••••		
15	19303	19313	10	150	0,002	7,50	2,00	84	**********	Collecteur Drainant Ø 400	0,027	0,74	0,74	0,000095	0,001425	0,22	0,006	0,13	0,77	10,00	92	4,90		•••••		
16	19313	19323	10	160	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,029	0,74	0,74	0,000095	0,001520	0,22	0,006	0,13	0,78	10,00	92	5,11				
17	19323	19333	10	170	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,031	0,74	0,74	0,000095	0,001615	0,21	0,007	0,14	0,80	10,00	92	5,33				
18	19333	19343	10	180	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,033	0,74	0,74	0,000095	0,001710	0,21	0,007	0,14	0,81	10,00	92	5,54				
19	19343	19353	10	190	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,034	0,74	0,74	0,000095	0,001805	0,20	0,008	0,15	0,83	10,00	92	5,74				
20	19353	19363	10	200	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,036	0,74	0,74	0,000095	0,001900	0,20	0,008	0,15	0,84	10,00	92	5,94				
21	19363	19373	10	210	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,038	0,74	0,74	0,000095	0,001995	0,20	0,008	0,15	0,85	10,00	92	6,14				
22	19373	19383	10	220	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,040	0,74	0,74	0,000095	0,002090	0,20	0,009	0,16	0,86	10,00	92	6,34				
23	19383	19393	10	230	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,042	0,74	0,74	0,000095	0,002185	0,19	0,009	0,16	0,87	10,00	92	6,53				
24	19393	19403	10	240	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,043	0,74	0,74	0,000095	0,002280	0,19	0,010	0,17	0,88	10,00	92	6,72				
25	19403	19413	10	250	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,045	0,74	0,74	0,000095	0,002375	0,19	0,010	0,17	0,89	10,00	92	6,91				
26	19413	19423	10	260	0,002	7,50	2,00	84	"""	Collecteur Drainant Ø 400	0,047	0,74	0,74	0,000095	0,002470	0,19	0,010	0,17	0,90	10,00	92	7,10				
27	19423	19433	10	270	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,049	0,74	0,74	0,000095	0,002565	0,18	0,011	0,18	0,91	10,00	92	7,28				
28	19433	19443	10	280	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,051	0,74	0,74	0,000095	0,002660	0,18	0,011	0,18	0,92	10,00	92	7,466747				
29	19443	19453	10	290	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,052	0,74	0,74	0,000095	0,002755	0,18	0,012	0,18	0,93	10,00	92	7,648828				
30	19453	19463	10	300	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,054	0,74	0,74	0,000095	0,002850	0,18	0,012	0,19	0,93	10,00	92	7,828434				
31	19463	19473	10	310	0,002	7,50	2,00	84	""""	Collecteur Drainant Ø 400	0,056	0,74	0,74	0,000095	0,002945	0,18	0,013	0,19	0,94	10,00	92	8,006963	İ			
32	19473	19483	10	320	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,058	0,74	0,74	0,000095	0,003040	0,18	0,013	0,20	0,95	10,00	92	8,18449				
33	19483	19493	10	330	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,060	0,74	0,74	0,000095	0,003135	0,18	0,013	0,20	0,95	10,00	92	8,359929				
34	19493	19503	10	340	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,061	0,74	0,74	0,000095	0,003230	0,17	0,014	0,20	0,96	10,00	92	8,534525				
35	19503	19513	10	350	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,063	0,74	0,74	0,000095	0,003325	0,17	0,014	0,21	0,97	10,00	92	8,707243	j			
36	19513	19523	10	360	0,002	7,50	2,00	84		Collecteur Drainant Ø 400	0,065	0,74	0,74	0,000095	0,003420	0,17	0,015	0,21	0,98	10,00	92	8,879244	į			

					0,002				_			_								0,50						
				Longueur	Pente du	Large	ur (m)				Q Rat		Coe	ef C	Surf	ace (km²)					CALCUI	L	, ,		BVN	
N° Tronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL		Nature du DL	Total (m³/s)	ı	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	Intensité (mm/h)	Somme des TC Unit	Q pointe	s c	TC T Retour
	0								l																	

TGO - Zone d'étude Saint Germain Grande Ceinture

PROJET

I maxi (mm/h) 91,9 TC mini = Coefficients de Montana : **Paris Montsouris** Montana pour T = Pour 25 min<Tc<6 heures : Pour Tc < 25 min : a1 = 211 823 0,361 0,784 Pas de calcul entre 2 PT (m) 10

Q100/Q10 pour les BVN

Rapport Q100/Q10 BV <2 km2 : Rapport Q100/Q10 BV >= 2 km2

Coefficients de ruissellement : Plateforme : 0,85

Talus : 0,35

PK début (m):

PK fin (m):

3 730

					0,002														0,50			_			
				Longueur	Pente du	Large	eur (m)				Q Rat	Coe	f C	Surfa	ce (km²)					CALCUL				BVN	
N° Trong	on PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL		Nature du DL	Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	ntensité mm/h)		Q pointe	с тс	T Retour
1	3630	3640	10	10	0,065	7,50	6,00	57		FBPB M60-15 mini	0,002	0,63	0,63	0,000135	0,000135	0,83	0,000	0.02	0.25	10,00	92	0.83			
2	3640	3650	10	20	0,065	7,50	6,00	57		FBPB M60-15 mini	0,004	 0,63	0,63	0,000135	0,000270	0,67	0,000	0,02	0,50	10,00	92	1,50			
3	3650	3660	10	30	0,065	7,50	6,00	57		FBPB M60-15 mini	0,006	 0,63	0,63	0,000135	0,000405	0,33	0,000	0,02	0,75	10,00	92	1,84			
4	3660	3670	10	40	0,065	7,50	6,00	57		FBPB M60-15 mini	0,009	 0,63	0,63	0,000135	0,000540	0,22	0,001	0,02	1,00	10,00	92	2,06			
5	3670	3680	10	50	0,065	7,50	6,00	57		FBPB M60-15 mini	0,011	 0,63	0,63	0,000135	0,000675	0,17	0,001	0,02	1,24	10,00	92	2,23			
6	3680	3690	10	60	0,065	7,50	6,00	57		FBPB M60-15 mini	0,013	 0,63	0,63	0,000135	0,000810	0,13	0,001	0,02	1,49	10,00	92	2,36			
7	3690	3700	10	70	0,065	7,50	6,00	57		FBPB M60-15 mini	0,015	 0,63	0,63	0,000135	0,000945	0,11	0,001	0,02	1,74	10,00	92	2,47			
8	3700	3710	10	80	0,065	7,50	6,00	57		FBPB M60-15 mini	0,017	 0,63	0,63	0,000135	0,001080	0,10	0,001	0,02	1,99	10,00	92	2,57			
9	3710	3720	10	90	0,065	7,50	6,00	57		FBPB M60-15 mini	0,019	 0,63	0,63	0,000135	0,001215	0,08	0,001	0,02	2,24	10,00	92	2,65			
10	3720	3730	10	100	0,065	7,50	6,00	57		FBPB M60-15 mini	0,022	 0,63	0,63	0,000135	0,001350	0,07	0,001	0,02	2,49	10,00	92	2,72			
	0								<u></u>			 <u> </u>													

N° Tronçon PK début (m) PK fin (m) Longueur tronçon (m) PH début (m) PK fin (m) Code du DL

Nature du DL Q Rat Total (m³/s)
 Coef C
 Surface (km²)
 CALCUL
 SBVN

 Pondéré
 Cumulé
 Tronçon
 Cumulée
 TC tronçon (min)
 SR23 cible
 He(m)
 V (m/s)
 TC Calc cumulé (mm/h)
 Intensité (mm/h)
 Q pointe
 S C
 TC T Retour

Calcul Drainage Longitudinal (Q Rationnel)

PROJET

Q100/Q10 pour les BVN

Rapport Q100/Q10 BV <2 km2 Rapport Q100/Q10 BV >= 2 km2

Coefficients de ruissellement :

Pas de calcul entre 2 PT (m)

PK début (m): 3 685

Plateforme : 0,85 Talus : 0,35

PK fin (m):

3 730

27 28 29 30 31

				0,002				
				Longueur	Pente du	Large		
N° Tronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée (m)	tronçon (m/m)	Plateforme	Talus	Code du DL
1	3685	3695	10	10	0,065	4,00	6,00	57
2	3695	3705	10	20	0,065	4,00	6,00	57
3	3705	3715	10	30	0,065	4,00	6,00	57
4	3715	3725	10	40	0,065	4,00	6,00	57
5	3725	3735	10	50	0,065	4,00	6,00	57
	0							

	Q Rat		Coe	f C	Surf	ace (km²)	CALCUL BVN											
Nature du DL	Total (m³/s)		Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	Intensité (mm/h)	Somme des TC Unit	Q pointe	s	С	тс	T Retour
 FBPB M60-15 mini	0,001		0,55	0,55	0,000100	0,000100	0,83	0,000	0,02	0,16	10,00	92	0,83					
 FBPB M60-15 mini	0,003		0,55	0,55	0,000100	0,000200	0,83	0,000	0,02	0,32	10,00	92	1,67					
 FBPB M60-15 mini	0,004		0,55	0,55	0,000100	0,000300	0,51	0,000	0,02	0,49	10,00	92	2,18					
 FBPB M60-15 mini	0,006		0,55	0,55	0,000100	0,000400	0,34	0,000	0,02	0,65	10,00	92	2,52					
 FBPB M60-15 mini	0,007		0,55	0,55	0,000100	0,000500	0,26	0,000	0,02	0,81	10,00	92	2,78					
			l															

N° Tronçon PK début (m) PK fin (m) Longueur tronçon (m) PH début (m) PK fin (m) Code du DL

Nature du DL Q Rat Total (m³/s)
 Coef C
 Surface (km²)
 CALCUL
 SBVN

 Pondéré
 Cumulé
 Tronçon
 Cumulée
 TC tronçon (min)
 SR23 cible
 He(m)
 V (m/s)
 TC Calc cumulé (mm/h)
 Intensité (mm/h)
 Q pointe
 S C
 TC T Retour

Calcul Drainage Longitudinal (Q Rationnel)

PROJET

Obs: TGO - Versailles Matelots Km 3+730 au 4+095 - Voie B - Côté G

TC mini = 10 I maxi (mm/h) 91,9

Coefficients de Montana : Paris Montsouris

Montana pour T = 10 ans

Pour Tc < 25 min: a1 = 211
b1 = 0,361

Pour 25 min< Tc <6 heures :

2 = 823 2 = 0,784

Pas de calcul entre 2 PT (m) 10

Q100/Q10 pour les BVN

Rapport Q100/Q10 BV <2 km2 : 2

Rapport Q100/Q10 BV >= 2 km2 : 2

Coefficients de ruissellement : PK début (m) : 3730

Plateforme: 0,85

Talus: 0,35

1 2 3 4 5 6 7 8 9 #

				0,002	Largeur (m)						Coe	ef C	Surface (km²)				0,50			BVN					
N° Tronç	on PK début (m)	PK fin (m)	Longueur tronçon (m)	Longueur cumulée (m)	Pente du tronçon (m/m)	Plateforme	Talus	Code du DL	Code du DL	Nature du DL	Q Rat Total (m³/s)	Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	Intensité (mm/h)	des TC	Q pinte	s c	т
1	3730	3740	10	10	0,006	12	3,00	58	Ì	FBPB M60-15 + H58	0,003	0,75	0,75	0,000150	0,000150	0.83	0.001	0.02	0.30	10.00	92	0.83			
2	3740	3750	10	20	0,006	12	3,00	58	**********	FBPB M60-15 + H58	0,006	0,75	0,75	0,000150	0,000300	0,56	0,001	0,02	0,60	10,00	92	1,39			
3	3750	3760	10	30	0,006	12	3,00	58		FBPB M60-15 + H58	0,009	0,75	0,75	0,000150	0,000450	0,28	0,002	0,02	0,90	10,00	92	1,67			
4	3760	3770	10	40	0,006	12	9,00	58		FBPB M60-15 + H58	0,012	0,64	0,71	0,000210	0,000660	0,19	0,003	0,06	0,51	10,00	92	1,86			
5	3770	3780	10	50	0,006	12	9,00	58		FBPB M60-15 + H58	0,015	0,64	0,69	0,000210	0,000870	0,33	0,003	0,06	0,66	10,00	92	2,18			
6	3780	3790	10	60	0,006	12	9,00	58		FBPB M60-15 + H58	0,019	0,64	0,68	0,000210	0,001080	0,25	0,004	0,08	0,62	10,00	92	2,44			
7	3790	3800	10	70	0,006	12	9,00	58		FBPB M60-15 + H58	0,022	0,64	0,68	0,000210	0,001290	0,27	0,005	0,08	0,73	10,00	92	2,70			
8	3800	3810	10	80	0,006	12	9,00	58		FBPB M60-15 + H58	0,026	0,64	0,67	0,000210	0,001500	0,23	0,006	0,09	0,73	10,00	92	2,933144			
9	3810	3820	10	90	0,006	12	9,00	58		FBPB M60-15 + H58	0,029	0,64	0,67	0,000210	0,001710	0,23	0,006	0,10	0,73	10,00	92	3,16154			
10	3820	3830	10	100	0,006	12	9,00	58		FBPB M60-15 + H58	0,032	0,64	0,66	0,000210	0,001920	0,23	0,007	0,10	0,82	10,00	92	3,38974			
11	3830	3840	10	110	0,006	12	9,00	58		FBPB M60-15 + H58	0,036	0,64	0,66	0,000210	0,002130	0,20	0,008	0,11	0,81	10,00	92	3,594165			
12	3840	3850	10	120	0,006	12	9,00	58		FBPB M60-15 + H58	0,039	0,64	0,66	0,000210	0,002340	0,21	0,008	0,12	0,80	10,00	92	3,800906			
13	3850	3860	10	130	0,006	12	9,00	58		FBPB M60-15 + H58	0,043	0,64	0,66	0,000210	0,002550	0,21	0,009	0,12	0,87	10,00	92	4,009415			
14	3860	3870	10	140	0,006	12	9,00	58		FBPB M60-15 + H58	0,046	0,64	0,65	0,000210	0,002760	0,19	0,010	0,14	0,86	10,00	92	4,201446			
15	3870	3880	10	150	0,006	12	9,00	58		FBPB M60-15 + H58	0,050	0,64	0,65	0,000210	0,002970	0,19	0,011	0,14	0,92	10,00	92	4,396087			
16	3880	3890	10	160	0,006	12	9,00	58		FBPB M60-15 + H58	0,053	0,64	0,65	0,000210	0,003180	0,18	0,011	0,15	0,90	10,00	92	4,577487			
17	3890	3900	10	170	0,006	12	9,00	58		FBPB M60-15 + H58	0,056	0,64	0,65	0,000210	0,003390	0,18	0,012	0,16	0,89	10,00	92	4,762017			
18	3900	3910	10	180	0,006	18	1,00	58		FBPB M60-15 + H58	0,060	0,82	0,66	0,000190	0,003580	0,19	0,013	0,16	0,95	10,00	92	4,949161			
19	3910	3920	10	190	0,006	18	3 1,00	58		FBPB M60-15 + H58	0,064	0,82	0,67	0,000190	0,003770	0,17	0,014	0,17	0,95	10,00	92	5,124062			
20	3920	3930	10	200	0,006	18	3 1,00	58		FBPB M60-15 + H58	0,068	0,82	0,68	0,000190	0,003960	0,18	0,015	0,18	0,94	10,00	92	5,300176			
21	3930	3940	10	210	0,006	18	1,00	58		FBPB M60-15 + H58	0,072	0,82	0,68	0,000190	0,004150	0,18	0,016	0,18	0,99	10,00	92	5,477516			
22	3940	3950	10	220	0,006	12	8,00	58		FBPB M60-15 + H58	0,076	0,65	0,68	0,000200	0,004350	0,17	0,016	0,19	0,98	10,00	92	5,645202			
23	3950	3960	10	230	0,006	12	8,00	58		FBPB M60-15 + H58	0,079	0,65	0,68	0,000200	0,004550	0,17	0,017	0,19	1,02	10,00	92	5,81582			
24	3960	3970	10	240	0,006	12	8,00	58		FBPB M60-15 + H58	0,082	0,65	0,68	0,000200	0,004750	0,16	0,018	0,21	1,00	10,00	92	5,979407			
25	3970	3980	10	250	0,006	12	2 8,00	58		FBPB M60-15 + H58	0,086	0,65	0,68	0,000200	0,004950	0,17	0,018	0,21	1,04	10,00	92	6,145862			
26	3980	3990	10	260	0,006	12	2 8,00	58		FBPB M60-15 + H58	0,111	0,65	0,66	0,000200	0,006590	0,16	0,024	0,25	1,10	10,00	92	6,306001 0	,0221 0	,001 0,6	6 4 10
27	3990	4000	10	270	0,006	12	2 8,00	58		FBPB M60-15 + H58	0,114	0,65	0,66	0,000200	0,006790	0,15	0,025	0,26	1,08	10,00	92	6,458148			
28	4000	4010	10	280	0,087	7	7,00	30		Fossé Trapézoïdal Revêtu 3/2 44-45	0,116	0,60	0,66	0,000140	0,006930	0,15	0,007	0,08	2,72	10,00	92	6,612721			
29	4010	4020	10	290	0,087	7	7,00	30		Fossé Trapézoïdal Revêtu 3/2 44-45	0,119	0,60	0,66	0,000140	0,007070	0,06	0,007	0,08	2,77	10,00	92	6,674077			
30	4020	4030	10	300	0,087	. 7	7,00	30		Fossé Trapézoïdal Revêtu 3/2 44-45	0,121	0,60	0,66	0,000140	0,007210	0,06	0,007	0,08	2,82	10,00	92	6,734323			
31	4030	4040	10	310	0,087	7	7,00	30	l	Fossé Trapézoïdal Revêtu 3/2 44-45	0,123	0,60	0,65	0,000140	0,007350	0,06	0,007	0,08	2,87	10,00	92	6,793499			
32	4040	4050	10	320	0,087	7	7 7,00	30		Fossé Trapézoïdal Revêtu 3/2 44-45	0,125	0,60	0,65	0,000140	0,007490	0,06	0,007	0,08	2,92	10,00	92	6,851642			
33	4050	4060	10	330	0,087	7	7,00	30	l	Fossé Trapézoïdal Revêtu 3/2 44-45	0,127	0,60	0,65	0,000140	0,007630	0,06	0,007	0,08	2,97	10,00	92	6,908787			
34	4060	4070	10	340	0,087	7	7,00	30		Fossé Trapézoïdal Revêtu 3/2 44-45	0,129	0,60	0,65	0,000140	0,007770	0,06	0,007	0,08	3,02	10,00	92	6,964969			
35	4070	4080	10	350	0,087	. 7	7,00	30		Fossé Trapézoïdal Revêtu 3/2 44-45	0,131	0,60	0,65	0,000140	0,007910	0,06	0,007	0,08	3,07	10,00	92	7,020219			
36	4080	4090	10	360	0,087	7	7,00	30	l	Fossé Trapézoïdal Revêtu 3/2 44-45	0,134	0,60	0,65	0,000140	0,008050	0,05	0,008	0,09	2,70	10,00	92	7,074567			

Largeur (m) Pente du Longueur Longueur tronçon (m) cumulée (m) N° Tronçon PK début (m) PK fin (m) Code du DL tronçon (m/m) Plateforme Talus 0,087 7 7,00 30 37 4090 4100 10 370

Surface (km²) Coef C CALCUL Q Rat Total (m³/s) TC Calc cumulé (min) Nature du DL SR23 cible Q pointe T Retour TC tronçon Intensité С Cumulé V (m/s) (mm/h) des TC Unit тс Tronçon cumulée (min) Fossé Trapézoïdal Revêtu 3/2 44-45 0,136 0,60 0,65 0,000140 0,008190 0,06 0,008 0,09 2,75 10,00 92 7,136228

Calcul Drainage Longitudinal (Q Rationnel)

PROJET

Obs: TGO - Versailles Matelots Km 3+870 au 3+985 - Voie B - Côté D

Pour 25 min<Tc<6 heures :

I maxi (mm/h) 91,9 TC mini = Coefficients de Montana : **Paris Montsouris** Montana pour T =

Q100/Q10 pour les BVN

Rapport Q100/Q10 BV <2 km2 Rapport Q100/Q10 BV >= 2 km2

Pas de calcul entre 2 PT (m)

Pour Tc < 25 min :

Coefficients de ruissellement :

Plateforme : 0,85 Talus : 0,35

a1 =

211

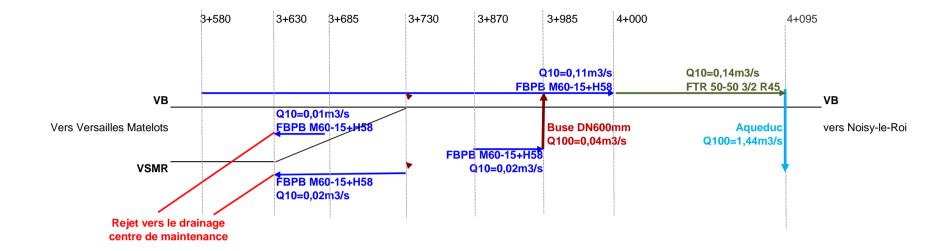
0,361

PK début (m):

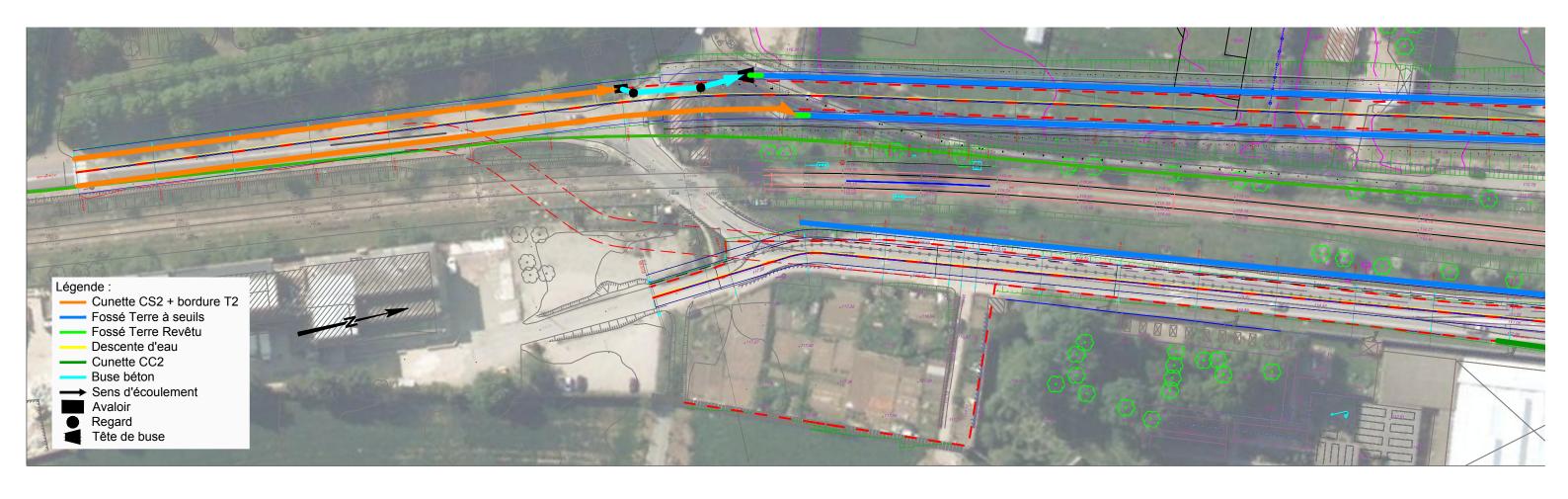
PK fin (m): 3 985

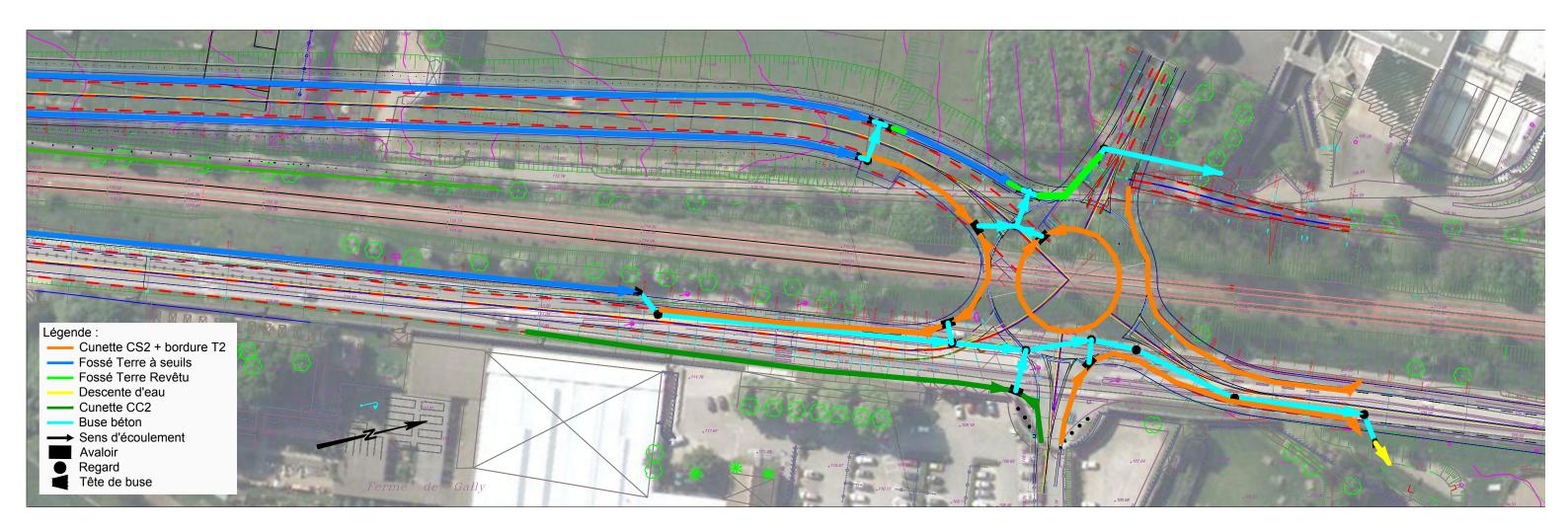
823

0,784

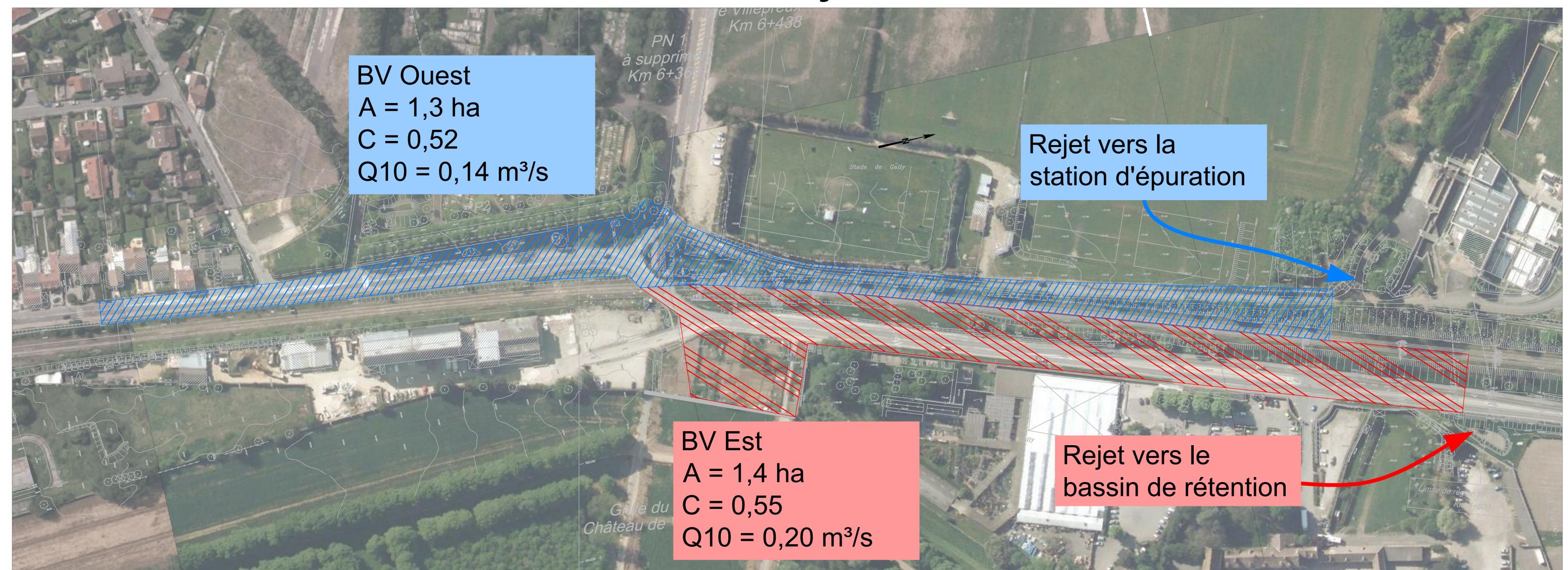

3 870

	1	2	3	4	5	0.002	1 ′	8	9	# # #	13	14	15	16	17	18	19	20	21	22	0.50	24	25	26	21	28	29 30	31
					Longueur	Pente du	Largeur (m)					Q Rat		Coe	Coef C		Surface (km²)					CALCUL				E	BVN	
N° Tr	ronçon	PK début (m)	PK fin (m)	Longueur tronçon (m)	cumulée	tronçon (m/m)	Plateforme	Talus	Code du DL	ode du DL	Nature du DL	Total (m³/s)		Pondéré	Cumulé	Tronçon	cumulée	TC tronçon (min)	SR23 cible	He(m)	V (m/s)	TC Calc cumulé (min)	Intensité (mm/h)	Somme des TC Unit	Q pointe	s	с тс	T Retour
Ī	1	3870	3880	10	10	0,006	6	6,00	58		FBPB M60-15 + H58	0,002		0,60	0,60	0,000120	0,000120	0,83	0,000	0.02	0.19	10,00	92	0.83				
	2	3880	3890	10	20	0,006	6	6,00	58	••••••	FBPB M60-15 + H58	0,004		0,60	0,60	0,000120	0,000240	0,83	0,001	0,02	0,38	10,00	92	1,67				
	3	3890	3900	10	30	0,006	6	6,00	58		FBPB M60-15 + H58	0,006		0,60	0,60	0,000120	0,000360	0,44	0,001	0,02	0,57	10,00	92	2,10				
	4	3900	3910	10	40	0,006	6	6,00	58		FBPB M60-15 + H58	0,007		0,60	0,60	0,000120	0,000480	0,29	0,002	0,02	0,76	10,00	92	2,39	,			
	5	3910	3920	10	50	0,006	6	6,00	58		FBPB M60-15 + H58	0,009		0,60	0,60	0,000120	0,000600	0,22	0,002	0,02	0,96	10,00	92	2,61				
	6	3920	3930	10	60	0,006	6	6,00	58		FBPB M60-15 + H58	0,011		0,60	0,60	0,000120	0,000720	0,17	0,002	0,06	0,47	10,00	92	2,79				
	7	3930	3940	10	70	0,006	6	6,00	58		FBPB M60-15 + H58	0,013		0,60	0,60	0,000120	0,000840	0,35	0,003	0,06	0,55	10,00	92	3,14				
	8	3940	3950	10	80	0,006	. 6	6,00	58		FBPB M60-15 + H58	0,015		0,60	0,60	0,000120	0,000960	0,30	0,003	0,06	0,63	10,00	92	3,444987				
	9	3950	3960	10	90	0,006	6	6,00	58		FBPB M60-15 + H58	0,017		0,60	0,60	0,000120	0,001080	0,27	0,004	0,06	0,70	10,00	92	3,711558				
	10	3960	3970	10	100	0,006	. 6	6,00	58		FBPB M60-15 + H58	0,018		0,60	0,60	0,000120	0,001200	0,24	0,004	0,08	0,60	10,00	92	3,948511				
	11	3970	3980	10	110	0,006	6	6,00	58		FBPB M60-15 + H58	0,020		0,60	0,60	0,000120	0,001320	0,28	0,004	0,08	0,66	10,00	92	4,224803				
	12	3980	3990	10	120	0,006	6	6,00	58		FBPB M60-15 + H58	0,022		0,60	0,60	0,000120	0,001440	0,25	0,005	0,08	0,72	10,00	92	4,475978				
		0																										

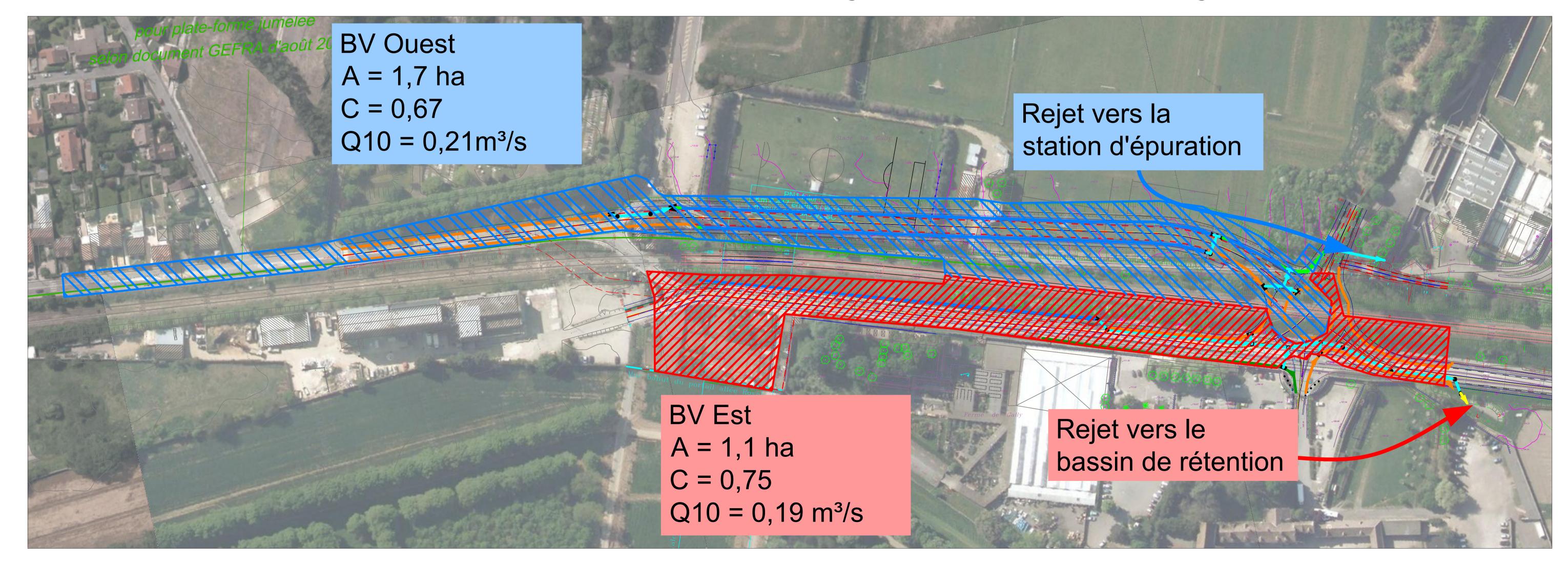

N° Tronçon PK début (m) PK fin (m) Longueur tronçon (m) PH début (m) PK fin (m) Code du DL

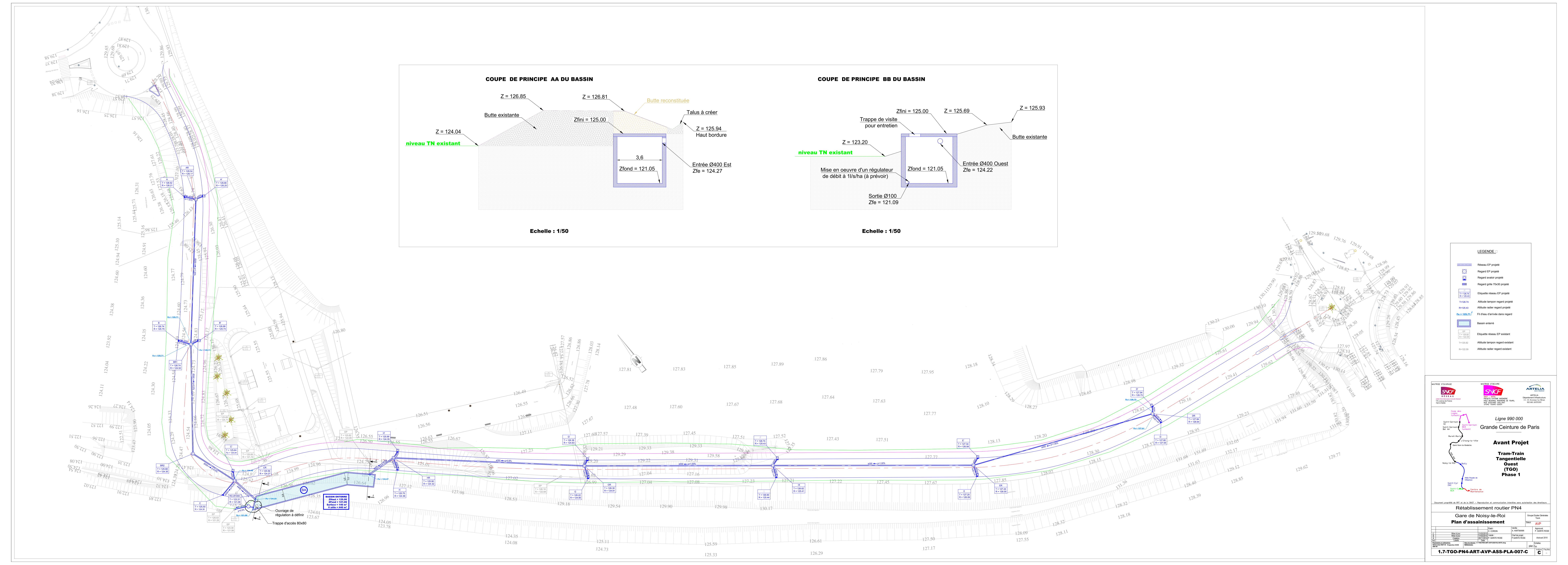

Nature du DL Q Rat Total (m³/s)
 Coef C
 Surface (km²)
 CALCUL
 SBVN

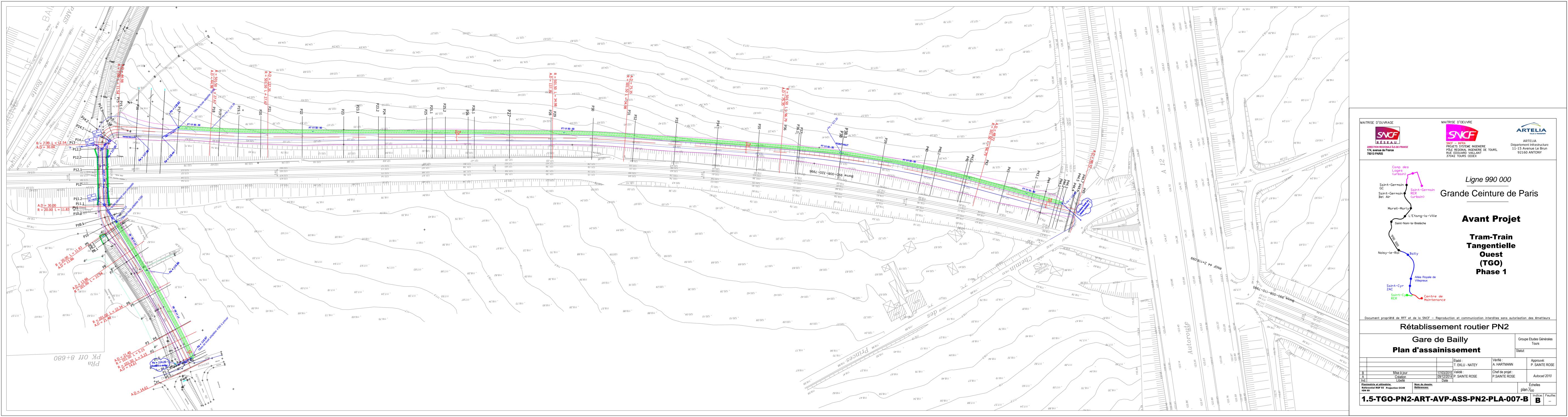
 Pondéré
 Cumulé
 Tronçon
 Cumulée
 TC tronçon (min)
 SR23 cible
 He(m)
 V (m/s)
 TC Calc cumulé (mm/h)
 Intensité (mm/h)
 Q pointe
 S C
 TC T Retour



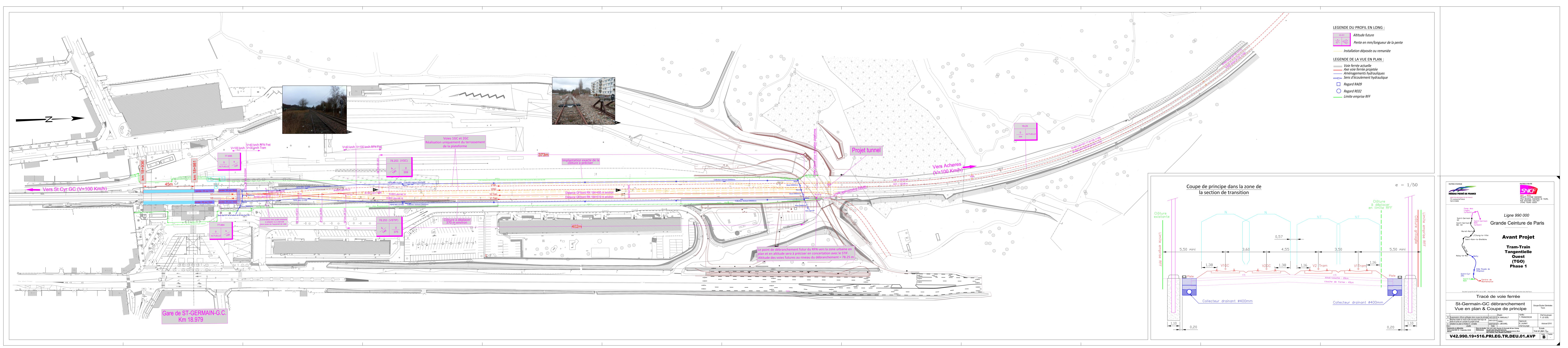
2.3. Assainissement retenu au niveau de la RD7

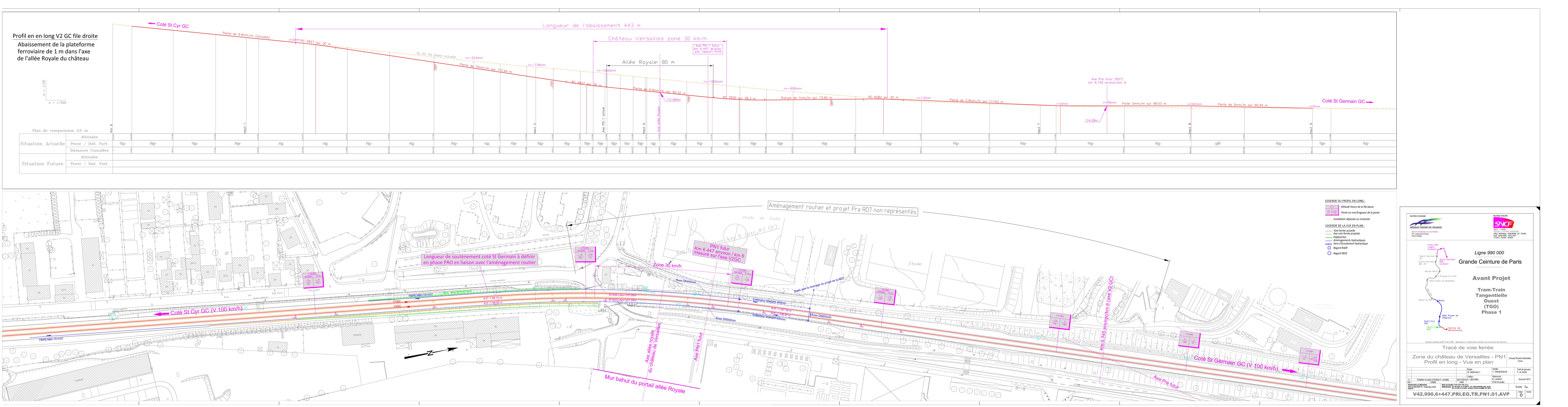


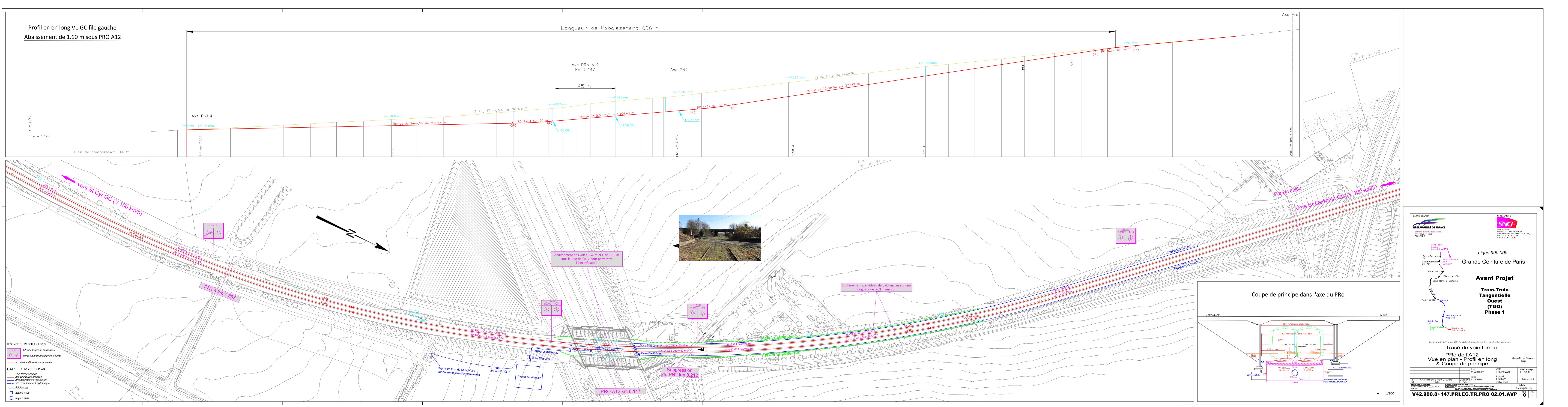

Bassins versants et rejets à l'état existant

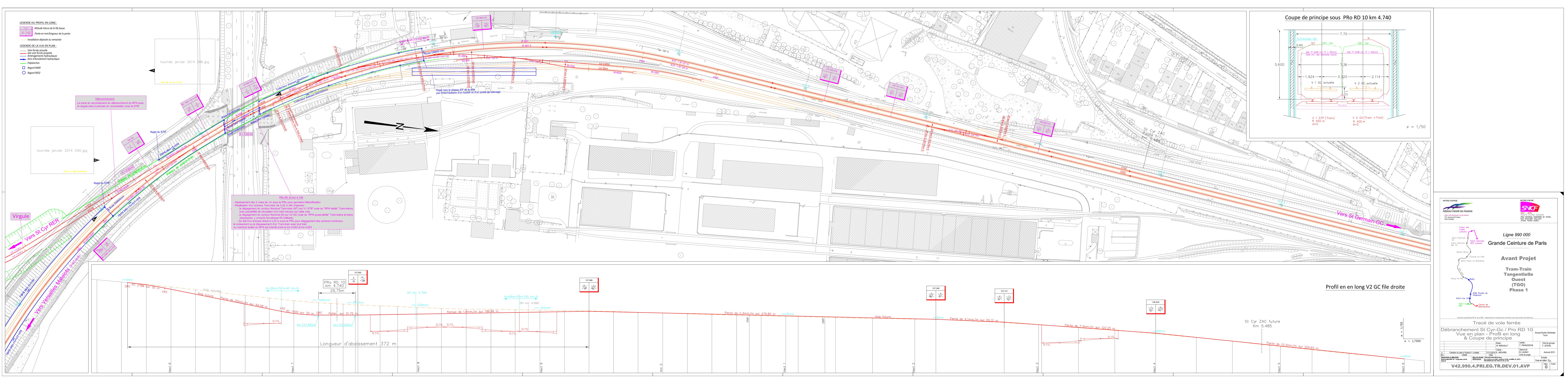

Bassins versants et rejets à l'état projet

2.4. Assainissement retenu au niveau du PN4




2.5. Assainissement retenu au niveau du PN2




2.6. Synoptiques du drainage

